Y«)) 444

Zewail C]ty of Science and Technology ZIW\%Y Laglgisillg pglall J—.lg) a-i-.l‘=.°

ESTABLISHED 200
AUG URATED 201 |

Space and Communications Engineering - Autonomous Vehicles Design and Control - Fall 2016

Setting UP CATBot Simulation

Environment

Mahmoud Abdul Galil

th
Tutorial-3, Tuesday October 4 , 2016

ros-example-1 Cont'd: CMakeLists.txt

(VERSION 2.8.3)

\We wrote our desired codes in
src folder

Now is time to inform the build (catkin REQUIRED COMPONENTS
system to include these codes roscpp

while building our workspace. rospy

This is done by modifying the std_msgs

CMakelL.ists.txt file.)

[Excluding documentation
comments, the new
CmakeL.ists.txt will look like
the picture on the right
[Notice that we added two build CATKIN_DEPENDS roscpp rospy std_msgs
targets as executables using
add_executable(), and linked)
catkin_LIBRARIES to then

using target_link_libraries(). 84 }

(ros-example-1)

catkin_package(

(talker_node src/talker_node.cpp)
(listener_node src/listener _node.cpp)

(talker_node ${ })
(listener_node ${

Let's Compile &Run the nodes :D

-catkin_make B

ssource devellsetup.baSh File Edit View Bookmarks Sekkings Help
srosrun ros-example-1 talker_node

-Open a new terminal

-source devel/setup.bash

srosrun ros-example-2 listener_node

ros_example_2: Overview

(VERSION 2.8.3)
(ros_example_2)

-The second example is about remote
procedure call in ROS ,
(catkin REQUIRED COMPONENTS

JFirst we create the package using message_generation

catkin_create_pkg ros_example_2 roscpp std_msgs ng?:ge—m”ti“‘e

-To define a service, we need to add std_nsgs

build and run dependencies for the two |

packages message_generation and ad_service files|
message_runtime, in the manifest file AddTwoInts. sy
(package.xml))

We define our service in AddTwolnts.srv

generate_messages(

file in srv folder o
‘Next we edit the CMakeLists.txt to: std_msgs

)
~Generate the header files from the

service definition catkin_package|
-Add dependency on the exported
targets (headers defining the CATKIN_DEPENDS message_generation message_runtime roscpp std_msgs
service) for the project
-Next we add two c++ files, one for a
server node and the other for a client
node.
HFinaI.Iy we edit the CMak_eLists.txt file to Eiﬂ:ﬁ{zggg: z:jif{:ﬁtr:ggj:jgg;
compile the server and client nodes from
their respective c++ files. e o Do e

ros_example_ 2 Cont'd: AddTwolnts.srv

-The .srv file is used by # Here we define the request field and

. # 1t consists from two fields of the
message_generatlon package to # data type int64

generate headers to define int64 a

services inted b

-The headers must be included # Then we define the responst which

in the files we wish to use the # consists of one field of the data
- . : # type inté64

defined service in inte4 sum

-Try to have a look on one of the

generated header files to have # The structure of the generated

o . # service object is then like:

more insight (you can find them

Inside the example_service:

devel/include/ros_example_2 1==> T‘Tﬂf_sg’

directory) ||==> b

| |==> Response:
| |==> sum

Universal Robot Description Format

-We need to have a model that describes
the configuration of the robot

:In ROS, URDF is the official description
format for robot models

-URDF is an XML-based language.
-URDF models are used with other ROS
packages to obtain important run-time
information about robots

-URDF is used in gazebo for simulation
purposes

-URDF is combined with xacro to
accelerate the process of writing big and
complex XML files

-There is a SolidWorks plugin to export a
SolidWorks model as a URDF description
package

Universal Robot Description Format cont'd

“Arobot is modeled in ROS as a tree-like
structure of non-deforming components.

-The non-deforming parts (also called Links) are
connected to each other through Joints.
-Exactly like there are many ways to connect
two rigid bodies in the real world, there are many
types of Joints available with varying degrees of
freedom for use in URDF.

By defining inertial, visual and collision
properties of individual links and the way the
links are connected to each other, a robot model
IS made.

-Once we have a model description, we can
parse it to a data structure and use it later for
simulation, visualization and frame
transformation between different parts of a
robot

Universal Robot Description Format cont'd

-Main tags in a URDF file are:
-<robot>
-<link>: http://wiki.ros.org/urdf/XML/link
-<visual>
-<origin>
-<geometry>
-<mesh>
-<collision>
-<origin>
-<geometry> . .
<mesh> Link origin
<inertial>
-<mass>
<inertia>
~<joint>: http://wiki.ros.org/urdf/XML/joint
<parent>
-<child>
-<origin>
-<dynamics>

Universal Robot Description Format cont'd

-A useful tool for building and visualizing URDF models can be
found here: http://mymodelrobot.appspot.com/

~There's also a tool for exporting Solidworks Assemblies as
description packages containing URDF, meshes and launch files
for uses with ROS, it can be found here:

http://wiki.ros.org/sw_urdf exporter
-However, this tool is a bit buggy and needs attention while designing and

exporting models so as not to face problems with the generated URDF models
later on

-Important Notes:
-Try to make collision geometries as simple as possible
-Pay attention to physical properties (such as mass and
Inertia) because they can cause problems if they are |ll-
defined.

Example URDF

-Here is a series of links to introductory
URDF tutorials on the R2D2 robot

model
-Building the robot from scratch
-Adding Movable Joints
~Adding collision and physical properties

-Using xacro, modeling complex robot

models can be made easier
-Using xacro to clean up a URDF

-A complex urdf.xacro robot model is
provided on the following links:
-Understanding PR2 model

-Some handly command-line tools:
-urdf_to_graphiz
-check_urdf

Introducing CATBot

-CATBot is a differential drive
robot

-We will use CATBot as a
mobile robot platform to apply
the algorithms we will study In
the course

-CATBot model is exported from

a SolidWorks assembly model
-As we go on in the course, we
will add functionalities to
CATBOot.

Introducing CATBot cont'd: catbot_description package

-Download the package containing urdf model of catbot inside
your local catkin workspace using the command:

-$ svn checkout https://github.com/mahmoudabdulazim/src/trunk/catbot_description/

.Let's see the hierarchy of the robot
-Get into the urdf directory inside the package
sUse the command:
-$ urdf_to_graphiz diff _catbot.urdf
-You'll see two generated files: diff _catbot.pdf and diff _catbot.gv
-Open the diff_catbot.pdf file, you ought to see something similar to this:

base_footprint

xyz: 00 0.125
rpy: 00 -1.5708

Xyz: 0 0.20508 -0.11627 Xyz: 0 0.27409 -0.039719 xyz: 0.15697 -0.073269 -0.041165
rpy: 1.5708 -0 -1.5708 rpy: 0 -0 1.5708 rpy: 1.5708 -0 -1.5708

Introducing RViz

"Rviz, is a tool for visualizing most data types in ROS such as:
olmages
JLaser Scans
1Odometry
o Trajectories
oMaps
gPoint Clouds

-In Addition, Rviz has plugins that help to integrate it with
Important packages such as navigation package and moveit
package, making the task of goal setting easier and more
convenient.

-Note: Rviz is a "VISUALIZATION” tool, not a simulation tool.

Introducing Gazebo

“Gazebo is a well-designed simulator that makes it possible to rapidly test algorithms, design
robots, and perform regression testing using realistic scenarios.” - gazebosim.org

Features

Advanced 3D Sensors and v Plugins

“, Dynamics
¥ Simulation

Access multiple high-performance
physics engines including ODE,
Bullet, Simbody, and DART.

I-H-‘ Robot
Models

Many robots are provided including

PR2, Pioneer2 DX, iRobot Create,

and TurtleBot. Or build your own
using SDF.

Graphics Noise

Utilizing OGRE, Gazeho provides
realistic rendering of
environments including
high-quality lighting, shadows, and
textures.

b

= TCP/IP
- Transport

Run simulation on remote servers,
and interface to Gazebo through
socket-based message passing
using Google Protobufs.

Generate sensor data, optionally
with noise, from laser range
finders, 2D/3D cameras, Kinect
style sensors, contact sensors,
force-torque, and more.

n Cloud
Simulation
Use CloudSim to run Gazebo on

Amazon, Softlayer, or your own
OpenStack instance.

Develop custom plugins for robot,
sensor, and environmental control.
Plugins provide direct access to
Gazebo's API.

Command
Line Tools

Extensive command line tools
facilitate simulation introspection
and control.

Introducing Gazebo cont'd

'ROS and Gazebo combined form a very strong tool for doing
realistic simulations
|If configured properly, once the algorithms work on the simulation,
he task of migration to actual hardware will be a piece of cake
hanks to the abstract nature of the interface between ROS and
azebo

1Gazebo Is buggy, it's an open-source project and is still under-
development
1Gazebo's official description language is SDF (Standard
Description Format), but it also supports URDF
"Additional physical properties used with simulation in Gazebo can
be added to a URDF model using the <gazebo> tag
Let's have a look on CATBot URDF:

1Go go the directory of catbot_description package

0Open the file diff_catbot.URDF (you'll find it inside the folder

Launch Files

sLaunch files are a convenient way to run big projects using a single command
-The idea is to write the commands in a file and use the roslaunch tool to run the
nodes

sLaunch files have other functionalities such as topic remapping (Advanced)
sLaunch files are usually kept inside a directory called launch inside a package (by
convention)

sLaunch files have a separate syntax that is based on XML, you can find the XML-
description of launch files here on this link: http://wiki.ros.org/roslaunch/XML

<launch>

<arg name="gui" default="False" />

<param name="robot description” textfile="$(find catbot description)/
urdf/diff_catbot.URDF"/>

<param name="use gui" value="true" />

<node name="joint state publisher" pkg="joint state publisher"”
type="joint_state publisher"/>

<node name="robot state publisher" pkg="robot state publisher"”
type="robot state publisher" respawn="false" />

<node name="rviz" pkg="rviz" type="rviz"/>
</launch>|

Visualizing CATBot using RViz

-We'll start by visualizing CATBot first using Rviz tool.
A launch file already exists that will take care of launching necessary nodes
sLet's run the file using the command:

oroslaunch catbot_description diff _catbot_display.launch

Adding A RobotModel for visualization

-On the left bottom .
side, there's a button

labeled “Add”, click on

It

-Pick RobotModel

5 s a visual representation of a robokt in the correct pose (as defined by
1e current TF transForms).

RoboktModel

Adding A RobotModel for visualization

File Panmels Help

g Interact <p* Move Camera W Select gy Focus Camers wew Measure o~ 2D Pose Estimate # 2D Nav Goal Publish Point +

m (%]

oIf you have any problems, check |EEEEE—_G—_G—_—.

Background C... [48; 48; 48

that the fixed frame field under the =
Global Options tab is set to - e
base footprint

-This is a visualization of the

current configuration of the robot.

-Since there is no simulation here,

this is just for visualization

purposes

sRobotModel option uses the joint

states published from

joint_state publisher and

robot_state publisher to visualize

the 6DoF state of all links in a

URDF model

QK

Add Duplicate

Q

ROSTime: 1475531810.58 ROS Elapsed: 266.18 Wall Time: 1475531810.50 Wall Elapsed: 266.09

Reset LeFe-Click: Rotate, Middle-Click: Move X/, Right-Click:: Move Z, shiFt: More options,

Simulation

,So far, we've only done =T~
visualization using Rviz, let's == i
use Gazebo Simulator e L e

<arg name="gui" default="true"/>
<arg name="headless" default="false"/>

DlnSide the CatbOt_d escription <arg name="debug" default="false"/>

<include file="$(find gazebo_ros)/launch/empty_world.launch" >

= <arg name="debug" value="%(arg debug)" />
package directory, a launch Sarg nane="gui velue="s(arg oui)” 72
] <arg name="paused" value="$(arg paused)"/>
<arg name="use_sim_time" value="$(arg use_sim_time)"/>

fi Ie eXiStS th at Wi” take Care <l’]_-lé_aLLll‘ge:ame:"head'Less" value="$(arg headless)"/>
Of Iau n C h i n g g aze bo an d diff_cat;i_:i'é;{;igl;‘;.'lL?:;:é;%n?;atbot_desc ription)/launch/diff_catbot/

<node name="teleop_node" pkg="catbot_contro'L"‘type="te1eop_node"/>
<node name="spawn_model" pkg="gazebo_ros" type="spawn_model"

spawning a model of our crgs="aan robotdescrpion “uret mod LT catbor sk sereen /5
robot
-Use the command.:

groslaunch

catbot_description

diff catbot _gazebo.launch

Exercises

-Go through the R2D2 tutorials on ROS Wiki
-Build a four wheeled rover URDF model using any method of
the following
gXacro (highly recommended)
oNormal URDF
nSolidworks and export it as URDF
“Write a launch file from scratch to visualize your robot, and to

spawn it in Gazebo
gHint: have a look on the diff _catbot _gazevo.launch file
and the diff_catbot_display.launch file
-There's a deliberate mistake in the file
diff catbot _gazebo_ willow garage world.launch file, find and
fix the issue

References

0s://wiki.ros.org/urdf/Tutorials/
0://[gazebosim.org/tutorials/?tut=ros_urdf
0s://github.com/gboticslabs/mastering_ros

