
MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 1/22 1 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

Tutorial-2

These slides are based on the online ROS Wiki documentation

Introduction to Robot Operating System

(ROS) using C++

Mahmoud Abdul Galil

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 2/22 2 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ros-example-1 Cont'd: CMakeLists.txt
lWe wrote our desired codes in

src folder

lNow is time to inform the build

system to include these codes

while building our workspace.

lThis is done by modifying the

CMakeLists.txt file.

lExcluding documentation

comments, the new

CmakeLists.txt will look like

the picture on the right

lNotice that we added two build

targets as executables using

add_executable(), and linked

catkin_LIBRARIES to then

using target_link_libraries().

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 3/22 3 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

Outline

Overview of ROS

ROS file system level

ROS communication graph level

ROS build-tool catkin

ROS command-line tools

ROS examples

Publisher ↔ Subscriber example

Server ↔ Client example

Custom message example

INTERMEDIATE: Publisher&Subscriber class example

INTERMEDIATE: Action ↔ Client example

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 4/22 4 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

Overview of ROS

 Concept of an Operating system:
An operating system is a low-level software that

manages computer hardware and software

resources and provides common services to

computer programs. All computer programs,

except firmware, require the presence of an

operating system[Wiki]. An OS is the only gate

through which a computer application can interact

with computer hardware.

 ROS is a meta-operating system
ROS is not an independent OS, it requires the

presence of UNIX-like OS to work. However, it

provides OS-like functions such as: inter-

processes message passing, hardware

abstraction, package management and other

features.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 5/22 5 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

Overview of ROS cont'd

Real-time vs General-purpose operating systems

 RTOS differs from GPOS in the way the task scheduler works, in GPOS the scheduler

manages resources to guarantee a certain goal that is often equal distribution of execution time. This

leads to an unpredictable nature of the scheduler, thus a “non-deterministic” execution time. In an

RTOS, the scheduler is designed to provide a predictable execution pattern, and thus a more-or-less

a deterministic execution time

ROS ≠ RTOS
 ROS is not an RTOS, since it is relies on UNIX-like OSes, which are generally non-RTOS.

ROS + Orocos RTT = RTROS
However, for hard-realtime requirements, integrations between ROS and third-party RTOS has been

to provide real-time processing inside the ROS network, follow the link here if you want more details:

http://www.orocos.org/rtt

http://www.orocos.org/rtt

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 6/22 6 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS is a middle-ware (glue-like code):

 In a complex system, such as a robot, many software applications/modules must co-exist

and communicate efficiently in order for the system to function properly. A native GPOS such as

windows or unix, generally, doesn't support an easy way to build such an ecosystem. Middle-wares

exist to to facilitate such a task by providing API that allow to implement communications and

input/output seamlessly among applications.

ROS alternatives
ROS is not the only middle-ware nor the oldest in robotics field. Many middle-wares such as

Orocos, Player/Stage, RT-middleware are all alternatives to ROS. However, ROS true power lies

in its conceptual design that promotes maximum code re-usability. In addition to flexible APIs that

allow for seamless integration with other third-party libraries and applications, and most importantly,

ROS adopts the open-source initiative, which may have been the main reason behind its sudden

popularity nowadays.

ROS community and ROS answers
One of the strongest pros of ROS is the big and expanding online community. Virtually anyone can

contribute to the ROS project and thousands of packages are available under opensource licenses

for free on the internet. Once you have a functional ROS system on your machine, you can easily

browse through the available softwares and pick whatever suits your application.

Overview of ROS cont'd

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 7/22 7 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Filesystem Level

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 8/22 8 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Filesystem Level: Packages

Packages are the basic building blocks of software in the ROS

framework

Packages can contain any-type of ROS-based software such as ROS-

runtime processes (nodes), ROS-independent software or even third-

party software

Each package must contain a package.xml file, also called a manifest

file, that describes the package and its build/runtime dependencies

among other information

Meta-packages are a bunch of related packages that do similar

functions or serve the same target, grouped together

It's only through packages that ROS-based software can be developed

Check ROS-Wiki for more information: http://wiki.ros.org/Packages

http://wiki.ros.org/Packages
http://wiki.ros.org/Packages
http://wiki.ros.org/Packages
http://wiki.ros.org/Packages
http://wiki.ros.org/Packages
http://wiki.ros.org/Packages
http://wiki.ros.org/Packages

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 9/22 9 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Client Libraries

ROS client libraries are the way to write ROS-enabled code

Client libraries implement ROS concepts in APIs available for

development

Client libraries exist in many APIs, a few of them are: C++, Python, Lisp

and Java

We will be using roscpp client library to write ROS-enabled C++ code.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 10/22 10 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 11/22 11 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Master

The ROSMASTER node is the main player in a ROS network.

Its function is similar to that of a Domain Name Server (DNS)

The role of the Master is to enable individual ROS nodes to locate

one another.

The ROSMASTER also hosts the Parameter Server

More Info: http://wiki.ros.org/Master

http://wiki.ros.org/Master

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 12/22 12 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Nodes

Nodes are run-time processes in the ROS

framework

Nodes can be written in C++ or other client library

provided APIs

Instead of “monolithic” code approach, nodes

provide a convenient way of distributing

computations between several software modules,

thus increasing fault tolerance and increasing

debug-ability of code

More Info: http://wiki.ros.org/Nodes

http://wiki.ros.org/Nodes

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 13/22 13 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Messages

A message is a simple data structure consisting

of different data fields

Nodes communicate with each other by

publishing messages to topics.

Message definition files (.msg) constitute a

simple way of defining message data structures

Message generation modules provided by client

libraries are then used to generate code from

.msg files

More Info: http://wiki.ros.org/Messages

http://wiki.ros.org/Messages

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 14/22 14 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Topics

Topics are named buses over which nodes

exchange messages.

 Topics are asynchronous communication

channels; the production of information is

decoupled from its consumption.

There can be multiple publishers and subscribers

to a single topic

More info: http://wiki.ros.org/Topics

http://wiki.ros.org/Topics

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 15/22 15 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

A simplifying analogy for asynchronous communication in

ROS (topic-based communication)

Topic↔ Board

Messages ↔ Notes

Given the above abstractions, a

publisher node can be abstracted

as a person that hangs a note on

the board, and a subscriber node

can be abstracted as a person that

is looking on the board observing

any thing hanged on it.

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 16/22 16 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Services

Services are a strictly one-to-one communication scheme

between nodes.

Services are remote procedure calls

A client node invokes a procedure call by sending a request to a

remote server node

The server node then replies with a response

Server ↔ Client communication is a synchronous type of

communication in ROS

This means that a client node enters an idle state until the server

node replies with the response

If the server fails to respond within time, the communication fails

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 17/22 17 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Actions

Actions are similar to services in that they are

another form of one-to-one synchronous

communication channel in ROS

Actions are different from services in that actions

are interruptible, if the action server fails to

respond before timeout, the client node preempts

the action server, forcing it to respond with a

predefined procedure

Actions can be used to invoke procedure calls

and monitor their progress.

More Info: http://wiki.ros.org/actionlib

http://wiki.ros.org/actionlib

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 18/22 18 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Bags

Bags are an out-of-the-box support of ROS to

provide record-and-play functionality for

messages

Bags can be used to record sensor readings and

use play them back later on to simulate same

situations without doing the hardware part all over

More Info: http://wiki.ros.org/Bags

http://wiki.ros.org/Bags

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 19/22 19 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Computation Graph Level: Parameter Server

Parameter server is a part of the ROSMASTER

It is a globally shared multi-variate dictionary,

accessible to all nodes in a given ROS network

through the network APIs.

As it is not designed for high-performance, it is

best used for static, non-binary data such as

configuration parameters.

More Info:

http://wiki.ros.org/Parameter%20Server

http://wiki.ros.org/Parameter Server

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 20/22 20 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS build-tool catkin

What is a build-system?
A build system is responsible for generating 'targets' from raw source code.

These targets may be in the form of libraries, executable programs or anything

that is not static code

How to create a catkin workspace?
A catkin workspace is the main directory in which ROS packages are created

and built. Creating a catkin workspace is done by invoking the command

catkin_init_workspace inside the src directory of the main workspace directory

Creating and building ROS packages using catkin

command-line tools
A catkin package is created by invoking the command catkin_create_pkg inside

the src directory

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 21/22 21 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS build-tool catkin cont'd

Some important catkin command line tools
catkin_init_workspace

 $ mkdir catkin_ws & cd catkin_ws

 $ mkdir src & cd src

 $ catkin_init_workspace

catkin_create_pkg

 $ catkin_create_pkg test_package roscpp std_msgs

catkin_make

 $ catkin_make

 Note: the last command must be invoked in the base directory of the catkin workspace

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 22/22 22 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

The mysterious “CMakeLists.txt” file

Each catkin-enabled package must contain a

CmakeLists.txt that instructs the compiler about

the targets and build configuration

The main tags in a CmakeLists.txt file for a catkin

package are:
cmake_require_minimum

project

find_package

add_executable

add_library

target_link_libraries

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 23/22 23 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Command-line tools

Rostopic

Rosmsg

Rosservice

Roscd

Rosrun

Roslaunch

Rospack

Rosnode

Roscore

Rosparam

Rosgr aph

Roswtf : (what the f…….fault)

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 24/22 24 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Examples: ros_example_1

Publisher Node ==> talker_node.cpp

Subscriber Node ==> listener_node.cpp

CmakeLists.txt

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 25/22 25 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

ROS Examples: ros_example_2

Service definition file (.srv)

Server Node ==> server_node.cpp

Client Node ==> client_node.cpp

CmakeLists.txt

MUSES_SECRET: ORF-RE Project - © PAMI Research Group – University of Waterloo 26/22 26 SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016

References

http://wiki.ros.org/ROS/Tutorials
https://github.com/qboticslabs/m
astering_ros

http://wiki.ros.org/ROS/Tutorials
https://github.com/qboticslabs/mastering_ros
https://github.com/qboticslabs/mastering_ros

