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Lecture 11 – Thursday December 15, 2016 

Learning 
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Objectives 

When you have finished this lecture you should be able to: 

• Recognize machine learning approaches. 

• Understand Naïve Bayes Classifier as theoretically optimal 

supervised learning approach when the independence 

assumptions hold. 

• Understand model-based reinforcement learning (RL) 

techniques and their role in creating cognitive agents able to 

take actions in an environment so as to maximize some notion 

of cumulative reward. 
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• Introduction to Machine Learning 

• Naïve Bayes Classifier  

• Reinforcement Learning 

• Model-based Reinforcement Learners 

• Summary 

Outline 
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Introduction to Machine Learning 

• What is machine learning? 

Machine learning is the study of computer algorithms that 

improve automatically through experience. It is the use of 

features in the data to create a predictive model. 

Learning algorithm 

TRAINING 
DATA 

Answer 

Trained Machine 

Query 
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Introduction to Machine Learning 

• Applications 

Biology 
Financial  
Services  

Image & Video  
Processing  

Audio 
Processing 

Energy 

Tumor 
Detection, 

Drug 
Discovery 

Credit Scoring, 
Algorithm 

Trading, Bond 
Classification 

Pattern 
Recognition 

Speech 
Recognition 

Load, Price 
Forecasting, 

Trading 

[1] 

Applications range from data mining programs that discover 

general rules in large data sets, to information filtering systems 

that automatically learn users’ interests. 
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Alfred Russel Wallace 

Charles Darwin 

Charles 
Darwin 

Alan Turing with 
Darwin’s beard 

Face Recognition 

[6] 

• Machine Vision 

Introduction to Machine Learning 
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• Speech Recognition 

[More info: http://www.bccresearch.com/pressroom/ift/global-voice-
recognition-market-reach-$113-billion-2017 ] 

Global voice recognition market to reach $113B in 2017 
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• Machine Learning Algorithms 

[1] 

Introduction to Machine Learning 
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• Machine Learning Algorithms: Unsupervised Learning 

[1] 

Introduction to Machine Learning 
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• Machine Learning Algorithms: Supervised Learning 

[1] 

Introduction to Machine Learning 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 12/22 12 L11, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Machine Learning Algorithms: Supervised Learning 

[1] 

Introduction to Machine Learning 
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Introduction to Machine Learning 

• Model performance Evaluation and Iterative Process 
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E
rr

o
r 

Training Cycles 

Training error 

Too simple model Too complex model 

Underfitting 
High bias 

Low variance 

Overfitting 
Low bias 

High variance 

Best balance 
smallest testing error and 
acceptable training error 

Testing 
error 

Introduction to Machine Learning 

• Model performance Evaluation 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 15/22 15 L11, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

Technological Challenges 

• Big Data and Deep Learning 

Source: Andrew Ng, How Scale is Enabling Deep Learning 

Performance 

Amount of Data 

Traditional learning algo 

Small Neural Networks 

Medium NN 

Large NN or deep learning 

Requires HPC to process big data 
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Naïve Bayes Classifier 

◊ Given: 

A collection of records (training set). Each record contains a 

set of attributes, one of the attributes is the class. 

◊ Required: 

Find a model  for class attribute as a function of the values of 

other attributes. 

Previously unseen records should be assigned a class as 

accurately as possible. 

• Classification Problem 
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Naïve Bayes Classifier 

A test set is used to determine the accuracy of the model. 

Usually, the given data set is divided into training (70%) and 

test sets (30%), with training set used to build the model and 

test set used to validate it. 

• Classification Problem 
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Naïve Bayes Classifier 

Training 
set (70%) 

Test set 
(30%) 

Learn Model Model 

Learning algorithm 

{Features, labels} 

{Features, labels} 

Apply Model 

Induction 

Deduction 

• Classification Problem 
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Naïve Bayes Classifier 

• Classification Problem 

A better practice is to divide the dataset into three sets: 

◊ Training set: used to train the model 

◊ Dev (development)/ hold-out/cross-validation set: 

used to tune parameters, select features, and make other 

decisions regarding the learning algorithm 

◊ Test set: used to evaluate the performance of the algorithm, 

but not to make any decisions about regarding what learning 

algorithm or parameters to use. 

Recommended split: Training (60%0, Cross validation 

(20%) and Testing (20%) 
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Naïve Bayes Classifier 

Naïve Bayes Classifier is a simple probabilistic classifier based on 

the Bayes theorem. 

• Given: 

D is a a training set of tuples and their associated class labels, 

and each tuple is represented by an n-D attribute vector X = (x1, 

x2, …, xn) 

m classes C1, C2, …, Cm 

H or Ci  is a hypothesis that X belongs to class Ci  

P(H) is the prior probability or the initial probability 

P(X) is the probability that sample data is observed 
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Naïve Bayes Classifier 

• Required:  

Classification or determine posteriori probability P(Ci |X), the 

probability that the hypothesis holds given the observed data 

sample X. 

From Bayes’ theorem 
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Since P(X) is constant for all classes, only                                         

needs to be maximized 
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 this is the a posteriori 

 this is called maximum a posteriori 

(MAP) 

• Naïve Bayes:  
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Naïve Bayes Classifier 

A simplified assumption: attributes are conditionally 

independent (i.e., no dependence relation between attributes): 
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X

This greatly reduces the computation cost: Only counts the class 

distribution. 

Ci 

x1 x2 xn 
… 
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Naïve Bayes Classifier 

• Likelihood 

P(X|Ci) is usually computed based on Gaussian distribution 

with a mean μ and standard deviation σ 
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Naïve Bayes Classifier 

• Pseudo-code 

◊ Learning Phase: Given a training set S,  

;  in examples  with)|( estimate)|(ˆ        

),1 ;,,1( attribute each of  value attribute every For    

; in examples  with)( estimate)(ˆ    

 of value target each For 1

S

S

ijkjijkj

jjjk

ii

Lii

cCaXPcCaXP

N,knj xa

cCPcCP

)c,,c(c c









  Output: conditional probability tables; for                   elements 

◊ Test Phase: Given an unknown instance                            ,  
      Look up tables to assign the label c* to X’ if  

Lnn ccccccPcaPcaPcPcaPcaP ,, ,   ),(ˆ)]|(ˆ)|(ˆ[)(ˆ)]|(ˆ)|(ˆ[ 1
*

1
***
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LNx jj   ,
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Naïve Bayes Classifier 

• Example: Gender Classification 

Classify whether a given person is a male or a female based 

on the measured features. The continuous features include 

height, weight, and foot size.  

Gender height (feet) weight (lbs) foot size (inches) 

male 6 180 12 

male 5.92 (5'11") 190 11 

male 5.58 (5'7") 170 12 

male 5.92 (5'11") 165 10 

female 5 100 6 

female 5.5 (5'6") 150 8 

female 5.42 (5'5") 130 7 

female 5.75 (5'9") 150 9 

◊ Training 
set 

[2] 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

Gender height (feet) weight (lbs) foot size (inches) 

? 6 130 8 

Below is a sample to be classified as a male or female. 

 

 

We wish to determine the gender, male or female.  

[2] 
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Naïve Bayes Classifier 

Let's say we have equiprobable classes so: 

P(male)= P(female) = 0.5 

There was no identified reason for making this assumption so it 

may have been a bad idea.  

If we determine P(C) based on frequency in the training set, we 

happen to get the same answer. 

Gender height (feet) weight (lbs) foot size (inches) 

? 6 130 8 

• Example: Gender Classification (cont’d) 

[2] 
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Naïve Bayes Classifier 

The classifier created from the training set using a Gaussian 

distribution assumption would be: 

Gender 
height 
(feet) 

weight 
(lbs) 

foot size 
(inches) 

male 6 180 12 

male 
5.92 

(5'11") 
190 11 

male 
5.58 
(5'7") 

170 12 

male 
5.92 

(5'11") 
165 10 

female 5 100 6 

female 5.5 (5'6") 150 8 

female 
5.42 

(5'5") 
130 7 

female 
5.75 

(5'9") 
150 9 

Gender 
mean 

(height) 
variance 
(height) 

male 5.855 3.5033e-02 

female 5.4175 9.7225e-02 

Gender 
mean 

(weight) 
variance 
(weight) 

male 176.25 1.2292e+02 

female 132.5 5.5833e+02 

Gender 
Mean    

(foot size) 
Variance  

(foot size) 

male 11.25 9.1667e-01 

female 7.5 1.6667e+00 

• Example: Gender Classification (cont’d) 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

)(

)()|(
)|(

X

X
X

P
i

CP
i

CP

i
CP 

)evidence(
)male()male|footsize()male|weight()male|height()|male(

P
PPPPP X

For the classification as male, the posterior is given by: 

[2] 

male 

height weight 

foot 
size 

Independent features 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

)(

)()|(
)|(

X

X
X

P
i

CP
i

CP

i
CP 

For the classification as female, the posterior is given by: 

)evidence(
)female()female|footsize()female|weight()female|height()|female(

P
PPPPP X

[2] 

female 

height weight 

foot 
size 

Independent features 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

)female()female|footsize()female|weight()female|height(                           

)male()male|footsize()male|weight()male|height(evidence)(

PPPP

PPPPP



X

The evidence (also termed normalizing constant) may be 

calculated since the sum of the posteriors equals one. 

The evidence may be ignored since it is a positive constant. 
(Normal distributions are always positive.) 

[2] 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

5.0)male( P

Gender height (feet) weight (lbs) foot size (inches) 

? 6 130 8 

5789.1
105033.32
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)855.56(

2

2
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x


 



Note that a value greater 
than 1 is OK here – it is a 

probability density 
rather the probability, 

because height is a 
continuous variable. 

[2] 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

Gender height (feet) weight (lbs) foot size (inches) 

? 6 130 8 

P(male) = 0.5 

p(weight | male) = 5.9881e-06 

p(foot size | male) = 1.3112e-3 

posterior numerator (male) = their product = 6.1984e-09 

[2] 
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Naïve Bayes Classifier 

• Example: Gender Classification (cont’d) 

Gender height (feet) weight (lbs) foot size (inches) 

? 6 130 8 

P(female) = 0.5 

p(height | female) = 2.2346e-1 

p(weight | female) = 1.6789e-2 

p(foot size | female) = 2.8669e-1 

posterior numerator (female) = their product = 5.3778e-04 

Since posterior numerator is greater in the female case,  

we predict the sample is female. [2] 
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Naïve Bayes Classifier 

• Why NB classifier? 

◊ Theoretically optimal if the independence assumptions hold, 

◊ Training is very easy and fast; just requiring considering each  

attribute in each class separately, 

◊ Test is straightforward; just looking up tables or calculating 

conditional probabilities with estimated distributions , 

◊ Robust to isolated noise points, 

◊ Handle missing values by ignoring the instance during 

probability estimate calculations, 

◊ Sort of robust to irrelevant features (but not really), 

◊ Probably only method useful for very short test documents . 
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• Naïve Bayes Classifier  

• Reinforcement Learning 

• Model-based Reinforcement Learners 

• Summary 

Outline 
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Markov decision process (MDP) provides a mathematical 

framework for planning under uncertainty. 

System 
System state 

is fully 
observable 

System state is 
partially 

observable 

System is 
autonomous 

Markov Chain 
(MC) 

Hidden Markov 
Model (HMM) 

System is 
controlled 

Markov 
Decision 

Process (MDP) 

Partially Observable 
Markov Decision 

Process (POMDP) 

UncertaintyPlanning

Learning

RL

MDP

POMDP

Reinforcement Learning 
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Reinforcement Learning 

Reinforcement Learning (RL) is a unique ML technique. It’s 

distinguishable from the other techniques for not requiring any 

training data nor examples, as it simply involves learning by 

experience.  

RL is learning what to do –how to 

map situations to actions– so as 

to maximize a numerical reward 

signal. 

RL features an interactive 

intelligent agent with an explicit 

goal to achieve. 
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Reinforcement Learning 

RL is not supervised  and is not unsupervised.  

RL is different from supervised learning: Supervised learning is 

learning from examples provided by a knowledgeable external 

supervisor. Reinforcement learning is learning from 

interaction. 

RL is weakly supervised or semi-supervised learning 

paradigm. 

• Supervised or unsupervised? 
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Reinforcement Learning 

Agent 

Environment 

Action 
aA(S) Reward 

rR(s,a,s’) 

State 
s S 

• Receive feedback in the form of rewards 

• Agent’s utility is defined by the reward function 

• Must (learn to) act so as to maximize expected rewards 

• All learning is based on observed samples of outcomes! 

Model: T(s,a,s’) 
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Reinforcement Learning 

Planar two-link manipulator 

• Example: Planar two-link manipulator 

The robot has to move to the front, but the agent does not have 
any knowledge about the environment previously.  

At each time step, the agent observes noisy sensor-readings 
of the joint angles, and outputs turning direction of the joint 
motors. The immediate reward is defined as the distance of 
the body movement by the step.  

Through trial and error, 
the agent has to learn 
such a control policy 
that maximizes 
reward function. 

R 
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• Elements of RL 

Reinforcement Learning 

Policy 

Reward 

Value 

Model 
Environment 

◊ Policy: it defines the agent’s 

“plan of action” that is, how 

the agent reacts to different 

environment situations and 

how it translates the states to 

actions. 

◊ Reward: rewards are the numerical values given by the 

environment to the agent in response to a state-action pair, 

they describe the immediate, intrinsic desirability of 

environmental states. 
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• Elements of RL 

Reinforcement Learning 

Policy 

Reward 

Value 

Model 
Environment 

◊ Value Function: is the long 

term version of a reward 

function, calculating 

discounted return starting 

from a specific state 

following a certain policy. 

◊ Environment Model: is a representation of the environment 

behavior. 
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• Applications 

Reinforcement Learning 

◊ Game playing (Backgammon, checkers, chess, etc.) 

◊ Economics 

◊ Operation research (inventory problems, exam/class 
schedules, dynamic channel allocation, etc.) 

◊ Control systems (inverted pendulum control, Autonomous 
Helicopter Flight 

[https://www.youtube.com/user/stanfordhelicopter ], etc.) 

◊ Robotics (active sensing, quadruped ball acquisition, 
quadruped gait control, soccer playing robots) 

◊ Elevator dispatching 

◊ Shaping in Action [http://www.cs.utexas.edu/~bradknox/TAMER_in_Action.html] 

◊ For more, visit: http://rl-community.org/wiki/Successes_Of_RL, 

http://umichrl.pbworks.com/w/page/7597597/Successes%20of%20Reinforcement%20Learning   

https://www.youtube.com/user/stanfordhelicopter
https://www.youtube.com/user/stanfordhelicopter
https://www.youtube.com/user/stanfordhelicopter
http://www.cs.utexas.edu/~bradknox/TAMER_in_Action.html
http://www.cs.utexas.edu/~bradknox/TAMER_in_Action.html
http://rl-community.org/wiki/Successes_Of_RL
http://rl-community.org/wiki/Successes_Of_RL
http://rl-community.org/wiki/Successes_Of_RL
http://rl-community.org/wiki/Successes_Of_RL
http://umichrl.pbworks.com/w/page/7597597/Successes of Reinforcement Learning
http://umichrl.pbworks.com/w/page/7597597/Successes of Reinforcement Learning
http://umichrl.pbworks.com/w/page/7597597/Successes of Reinforcement Learning
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• Applications: Soccer-playing robots 

Reinforcement Learning 

◊ Actions: rotate left/right 

◊ States: orientation 

◊ Reward: +1 for facing ball 

           0 otherwise 

[3] 

Find the ball 

PAMI, University of Waterloo 

../../../Seminar/direct.avi
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• Applications: Inverted Pendulum Control 

Reinforcement Learning 

◊ As an episodic task where episode ends upon failure: 

[4] 

Avoid failure: the pole falling beyond 
a critical angle or the cart hitting end of 
track. 

reward = +1 for each step before failure 
⇒ return = number of steps before failure 

◊ As a continuing task with discounted return: 

reward = −1 upon failure; 0 otherwise 
⇒ return = −γk , for k steps before failure 

In either case, return is maximized by avoiding failure for as 
long as possible. 
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• Applications: Car Control 

Reinforcement Learning 

[4] 

Get to the top of the hill as quickly as 
possible 

reward = −1 for each step where not at top of hill 
⇒ return = − number of steps before reaching top of hill 

Return is maximized by minimizing number of steps to reach 
the top of the hill 
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Reinforcement Learning 

• RL vs. MDP 

MDP RL 

Given a set of states s S a set of states s S 

a set of actions (per state) A a set of actions (per state) A 

a model T(s,a,s’) Unknown 

a reward function R(s,a,s’) Unknown ahead of time 

Required Learn policy   Learn policy   

Objective Planning under uncertainty Learning from interaction 

Process Off-line On-line 
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Model-based 

RL 

Model-free 

Passive Active 
Assume the agent is already following a policy (so 
there is no action choice to be made; you just need 
to learn the state values and may be action model)  

Need to learn both the optimal 
policy and the state values (and 

may be action model) 

Skip models and directly learn what action to 
do when (without necessarily finding out the 

exact model of the action) 

Have/learn action models (i.e. 
transition probabilities) 

Reinforcement Learning 

Transitions T(s,a,s’) Rewards R(s,a,s’) Actions Policy Goal 

Passive RL unknown unknown given action given fixed policy (s) learn the state values 

Active RL unknown unknown choose actions to be learned or chosen  learn optimal policy 
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[6] 

• Example: compute expected age of a group of students 

𝐸 𝐴 =  𝑝 𝑎 . 𝑎 = 0.4 × 20 + 0.6 × 19 = 19.4

𝑎

 

a. Distribution over age is known 

b. Distribution over age is unknown 

Collect N samples [a1, a2,…, aN] 

𝑝 𝑎 =
𝑛𝑢𝑚. 𝑜𝑓. 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒(𝑎)

𝑁
 

𝐸 𝐴 ≈  𝑝 𝑎 . 𝑎

𝑎

 

◊ Model-based approach 

𝐸 𝐴 ≈
1

𝑁
 𝑎𝑖

𝑖

 

◊ Model-free approach 

60% 
19 

40% 
20 

Reinforcement Learning 
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• Introduction to Machine Learning 

• Naïve Bayes Classifier  

• Reinforcement Learning 

• Model-based Reinforcement Learners 

• Summary 

Outline 
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• Model‐Based Idea 

◊ Learn an approximate model based on experiences 

◊ Solve for values as if the learned model were correct 

◊ Step 1: Learn empirical MDP model 

 Count outcomes s’ for each s, a 

 Normalize to give an estimate of 𝑇 (𝑠, 𝑎, 𝑠 ) 

 Discover each 𝑅 (𝑠, 𝑎, 𝑠 ) when we experience (𝑠, 𝑎, 𝑠 ) 

◊ Step 2: Solve the learned MDP 

 For example, use value iteration, as before 

• Steps 

𝑇 , 𝑅  

𝑠  

s a 

r 

[6] 

Model-based Reinforcement Learners 
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• Model‐Based Idea 

Input Policy  Observed Episodes (Training) Learned Model 

[6] 

Model-based Reinforcement Learners 

𝐴𝑠𝑠𝑢𝑚𝑒 𝛾 = 1 

𝑃𝑠𝑎 𝑠 =
#𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑡𝑜𝑜𝑘 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑎𝑛𝑑 𝑔𝑜𝑡 𝑡𝑜 𝑠 

#𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑡𝑜𝑜𝑘 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠
 

𝑇 𝑠, 𝑎, 𝑠  

 

? 

𝑅 (𝑠, 𝑎, 𝑠 )  



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 55/22 55 L11, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Model‐Based Idea 

Input Policy  Observed Episodes (Training) 

Model-based Reinforcement Learners 

𝑃𝑠𝑎 𝑠 =
#𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑡𝑜𝑜𝑘 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑎𝑛𝑑 𝑔𝑜𝑡 𝑡𝑜 𝑠 

#𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑡𝑜𝑜𝑘 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠
 

𝑇(𝐵, 𝑒𝑎𝑠𝑡, 𝐶)  =
1 𝑖𝑛 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 1 +1 (𝑖𝑛 𝑒𝑠𝑝𝑖𝑠𝑜𝑑𝑒 2) 

2
=1.00 𝑅 𝐵, 𝑒𝑎𝑠𝑡, 𝐶 = −1  
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• Model‐Based Idea 

Input Policy  Observed Episodes (Training) 

Model-based Reinforcement Learners 

𝑇(𝐶, 𝑒𝑎𝑠𝑡, 𝐷)  =
1 𝑖𝑛 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 1 +1 (𝑖𝑛 𝑒𝑠𝑝𝑖𝑠𝑜𝑑𝑒 2)+1 (𝑖𝑛 𝑒𝑠𝑝𝑖𝑠𝑜𝑑𝑒 3) 

4
=0.75 

𝑅 𝐶, 𝑒𝑎𝑠𝑡, 𝐷 = −1  
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• Model‐Based Idea 

Input Policy  Observed Episodes (Training) 

Model-based Reinforcement Learners 

𝑇(𝐶, 𝑒𝑎𝑠𝑡, 𝐴)  =
1 𝑖𝑛 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 4  

4
=0.25 

𝑅 𝐶, 𝑒𝑎𝑠𝑡, 𝐴 = −1  
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• Model‐Based Idea 

Input Policy  Observed Episodes (Training) Learned Model 

[6] 

Model-based Reinforcement Learners 

𝑃𝑠𝑎 𝑠 =
#𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑡𝑜𝑜𝑘 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑎𝑛𝑑 𝑔𝑜𝑡 𝑡𝑜 𝑠 

#𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑡𝑜𝑜𝑘 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠
 

The more experience you collect, the more accurate will be your model 
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• Situation Awareness 

• Uncertainty  

• State Estimation 

• Bayesian Rule 

• Naïve Bayes Classifier 

• Summary 

Outline 
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Summary 

• Naïve Bayes is theoretically optimal classifier if independence 

assumptions hold. 

• The objective of reinforcement learning it to learn optimal policy 

with a priori unknown environment. RL agent assumes fully 

observable state(i.e. agent can tell its state) and agent needs to 

explore environment (i.e. experimentation) 

• It is difficult to directly compare the model-based and model-

free reinforcement learners. Typically, model-based learners are 

much more efficient in terms of experience; many fewer 

experiences are needed to learn well. However, the model-free 

methods often use less computation time. If experience was 

cheap, a different comparison would be needed than if 

experience was expensive. 
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End of the course 

Best wishes! 


