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Differential Motions and Velocities




Objectives

When you have finished this lecture you should be able to:

« Understand the differential kinematics problem of the robot.

e Learn how to derive forward and inverse instantaneous
kinematic equations of the robot.

« Understand kinematic singularity.
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Differential Kinematics

Serial chain
manipulator

Given: The positions of all members of
the chain and the rates of motion about
all the joints.

Required: The total velocity of the end-
effector.

Forward Instantaneous Kinematics
Inverse Instantaneous Kinematics

Given: The positions of all members of the
chain and the total velocity of the end-
effector.

Required: The rates of motion of all joints.

End-effector

« Forward Instantaneous Kinematics=Forward Jacobian=Forward Differential Kinematics
« Inverse Instantaneous Kinematics=Inverse Jacobian=Inverse Differential Kinematics
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Differential Kinematics

« The rate of motion about the joint is the angular velocity of
rotation about a revolute joint or the translational velocity of
sliding along a prismatic joint.

« The total velocity of a member is the velocity of the origin of
the reference frame fixed to it combined with its angular
velocity. That is, the total velocity has six independent
components and therefore, completely represents the velocity
field of the member.

o It is important to note that this definition includes an
assumption that the pose of the mechanism is completely
known. In most situations, this means that either the forward
or inverse position kinematics problem must be solved before
the differential kinematics problem can be addressed. The same
is true of the inverse instantaneous kinematics problem.
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Differential Motions

Differential motions are small movements of mechanisms (e.g.,
robots) that can be used to derive velocity relationships between
different parts of the mechanism. 1

« 2-DOF planar mechanism

The equations that describe the
position of point B are as follows:

Xz =1, cos6, +1,cos(6, +6,)
Vg =1,SIn G, +1,sIin(6, +6,)

Differentiating these equations 6 -
gives: m&f

2-DOF planar mechanism
dx; =—l,sin 6dE, —1,sin(6, +6,)(d6, +db,)
dy, =1,cos6,dé, +1, cos(6, +6,)(d6, +db,)




Differential Motions

« 2-DOF planar mechanism (cont’d)

dxg =-l,sin 8,d6, —1,sin(6, +6,)(d6, +déb,)
dy, =1, cos6,dé, +1,cos(6, +6,)(dE, +db,) .

and in matrix form: MBT

dxg | |—1sin@, —I,sin(@, +6,) —1,5IN(0,+6,) | d6,
dy, | | 1,cos0, +I,cos@,+0,) 1,cos®, +96,) | de,

Differential Jacobian Matrix Differential
motion of B motion of joints
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Differential Motions

« 2-DOF planar mechanism (cont’d)
dxg | [—1sIN6, —1,51n(0, +6,) —1,51N(0, +6,) || A6,
dy, | | l,cos0, +l,cos@®,+0,) 1,cos®,+90,) | de,

This is the differential motion relationship. A differential
motion is, by definition, a small movement.

Therefore, if it is measured in—or calculated for—a small
period of time (a differential or small time), a velocity
relationship can be found.

dxg —1,sin@, —1,sin(0, +0,) —1,sIN(0,+6,) || dO,
dy | l,cos@, +1,cos@,+6,) l,cos®,+6,) |de,
dt dt




Differential Motions

}?

e 2-DOF planar mechanism (cont’d) |

Lail

I —1,5IN0, —1,sin(6, +0,) —1,sIin(6,+0,)
|,cos0, +1,cos@,+0,) 1,cos@®,+0,)

=
-
-

Y

¢ The Jacobian is a representation of the geometry of the
elements of a mechanism in time.

¢ Jacobian is time-related; since the values of joint angles vary
in time, the magnitude of the elements of the Jacobian vary in
time as well.




Differential Motions

}?

e 2-DOF planar mechanism (cont’d) |

{de} {del}
=J or
dy . de,

{de}
5 Ldye “

. -

Lail

Y

de,

¢ Jacobian defines how the end effector changes relative to
instantaneous changes in the system.

¢ It allows the conversion of differential motions or velocities of
individual joints to differential motions or velocities of points of
interest (e.g., the end effector). It also relates the individual joint
motions to overall mechanism motions.
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Differential Motions of a Frame

Z
A o'

1 o

/

(a) Differential
motions of a frame

X

A

>

Hand differential

motlons

Joint differential
motions

X

(b) differential motions of the
robot joints and the endplate

(c¢) differential motions of a frame caused by the differential motions of a robot
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Differential Motions of a Frame

Differential motions of a frame can be divided into the following:
« Differential translations;

« Differential rotations;

 Differential transformations (combinations of translations and
rotations).




Differential Motions of a Frame

« Differential Translations

A differential translation is the translation of a frame at
differential values.

Therefore, it can be represented by Trans(dx, dy, dz).

This means the frame has moved a differential amount along the
X-, y-, and z-axes.




Differential Motions of a Frame

« Differential Translations

Example: A frame B has translated a differential amount of
Trans(0.01, 0.05, 0.03) units. Find its new location and

orientation.

0.707 0
0 1
0.70/ 0
0 O

B=

-0.707 5]
0 4

0.707 9
0 1

Solution: Since the differential motion is only a translation,
the orientation of the frame should not be affected. The new
location of the frame is:

1 00
B=

0 1 0
0 0 1
00 0

0.01

0.05

0.03
1

0.70/7 0
0 1
0.707 0
0 O

-0.707 5
0 41 _
0.707 9|
0 1

0.707
0
0.707
0

—-0.707 5.01

0 4.05

0.707 9.03
0 1




Differential Motions of a Frame

« Differential Rotations about the Reference Axes

A differential rotation is a small rotation of the frame. It is

generally represented by Rot(q,d0), which means that the
frame has rotated an angle of d6 about an axis q.

Specifically, differential rotations about the x-, y-, and z-axes are
defined by éx, 8y, and dz.

Since the rotations are small amounts, we can use the
following approximations:

sin X = X (In radians)
CosoX =1
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Differential Motions of a Frame
« Differential Rotations about the Reference Axes

Then, the rotation matrices representing differential rotations
about the x-, y-, and z-axes will be:

1 0 0 o] [1 0 0 O]
0 cosox -—sinox O 0 1 -o6x O
Rot(X, oX) = _ ~
0 sinox cosox O 0 ox 1 O
0 0 0 1] [0 0 0 1]
1 0 98y O 1 -8z 0 O
ROt (Y, ) = 0 1 0 O’ Rot (2, &2) = oz 1 0 O
-0y 0 1 O 0 0 10
0 0 0 1 0 0 01




Differential Motions of a Frame

« Differential Rotations about the Reference Axes

Similarly, we can also define differential rotations about the
current axes as:

1 0 0 O
0 1 -on O
Rot(n,on) =
0O on 1 O
o 0 0 1
1 0 60 O] 1 -8a 0 O
0O 1 0 O 6a 1 0 O
Rot (0, %) = Rot(a,da) =
-60 0 1 O 0 0 10
0 0 0 1 0O 0 01




Differential Motions of a Frame
« Differential Rotations about the Reference Axes

Order of multiplication in Successive Rotations:

(1 0 0 0] 1 0 &y O] 1 0 dy O]
0 1 -ox Of O 1 0 O oxoy 1 -ox O
Rot(x, &)Rot(y, dy) = =
0 ox 1 Of-0oy O 1 O -0y ox 1 O
o0 0 10 0 0 1] [ O o 0 1
1 0 o8y Of 0 0] [ 1 &xdy oy O]
0O 1 0 O -ox O 0 1 -ox O
Rot(y, dy)Rot(x, ) = X — X
-0y 0 1 O0Jj0 ox 1 O |-oy ox 1 0
0 0 0 1j0 0 0 1) 0 0 0 1]

If we set higher-order differentials such as 6x 8y to zero,
the results are exactly the same. Consequently, for differential
motions, the order of multiplication is no longer important

and Rot(x, 6x)Rot(y, dy)= Rot(y, dy)Rot(x, ox).
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis o



Differential Motions of a Frame

- Differential Rotation about a General Axis q

We can assume that a differential

rotation about a general axis q is
composed of three differential

q
. , iy /
rotations about the three axes, in any g )

order, or

(dO)q = ()i + () )+ (a)k

A

d@

(N3,
‘}(:{ A,

IT'-




Differential Motions of a Frame

 Differential Rotation about a General Axis q
Rot(g,df) = Rot(x,8x)Rot(y, 8y)Rot(z, §z)

If we neglect all higher-order differentials, we get:

Rot(q,dB) = Rot(x, 8x)Rot(y,8y)Rot(z,8z)

1 0 0
0 1 —éx
0 éx 1
0 0 0
1
3x3}f—|—32
—d8y + dxbz
0

0 1 0
0 0 1
Of]—=dy 0
1L o o
—dz
—dx0ydz + 1
dx + dydz
0

dy 0
0 0
1 0
0 1
Sy 0
—dx 0
1 0
0 1

1 -6
5z 1
0 0
0 0

o = o O

—iz
1
dx

- o O

§y
—Ox
1

0

= O O
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Differential Motions of a Frame

- Differential Rotation about a General Axis q

Example: Find the total differential transformation caused by
small rotations about the three axes of 6x=0.1, dy= 0.05, 6z=0.02
radians.

Solution:
[ 1 =6z by O] [ 1 —0.02 0.05 0]
52 1 —éx 0 0.02 1 =01 0
Rot(g,d0) = | s s 1 o]~ |-005 01 1 0
L0 0 o 1] [ o0 0 0 1




N
Differential Motions of a Frame

e Differential Transformations of a Frame

The differential transformation of a frame is a combination of
differential translations and rotations in any order.

If we denote:
T: the original frame

dT: the change in the frame T as a result of a differential
transformation, then:

[T+dT]=[Trans(dx, dy, dz)Rot(qg, d0)][T]

or

[dT] =[Trans(dx, dy, dz)Rot(q, d0) — ][ T]

where I 1s a unit matrix.
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis . o5
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Differential Motions of a Frame

e Differential Transformations of a Frame

[dT] =[Trans(dx, dy, dz)Rot(q, d0) — ][ T]

The above equation can be written as:
[dT]=[A]T]
where

A =[Trans(dx, dy, dz)Rot(qg, dO) — 1]

[A] (or simply A) is called differential operator.



Differential Motions of a Frame

e Differential Transformations of a Frame
A = Trans(dx, dy,dz) x Rot(q,dd) — I

1 0 0 dx 1 =8z 46y O 1 0 0 0
10 1 0 dy 6z 1 —=déx 0 0O 1 0 0
{0 0 1 d=z|{|-86y 6 1 Ol |0 O 1 0

00 0 1[0 0 0 1/ [0 0 0 1

0 =6z Oy dx
6z 0 —déx dy
A= —dy  Ox 0 dz

0 0 0 0

As you can see, the differential operator is not a transformation
matrix, or a frame. It does not follow the required format either;

it is only an operator, and it yields the changes in a frame.
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis o7
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Differential Motions of a Frame

e Differential Transformations of a Frame

Example: Find the effect of a differential rotation of 0.1 rad
about the y-axis followed by a differential translation of [0.1, 0,
0.2] on the given frame B.

0 0 1 107
1 0 0 5
=10 10 3
00 0 1

Solution:

Fordx=0.1, dy=0, dz=0.2, éx=0, dy=0.1, dbz=0

0 0 01 0170 0 1 10 0 01 0 04
0 0 0 O0f[1 00 5 0 0 0 0

MBI =MBI=1 51 0 0 o2[lo 10 3| |0 0 —01 —o0s8
o 0 0 O0f|lo0oo0 1] |00 0 0




Differential Motions of a Frame

e Differential Transformations of a Frame

Example: Find the location and the orientation of frame B

after the move. - 110" ] )
_? g (1} 1;} 0 01 0 04
B — | - o o 0 0

0 1 0 3| dB= 0 0 —01 -08
[0 0 0 1 0 0 0 0

Solution: The new location and orientat-ion of the frame _can
be found by adding the changes to the original values. The
result is:

BHE!EJ — Bun'g:'.um! + dB

0 0 1 10 0 01 0 04 0 01 1 104
100 5 0 0 0 0 1 0 0 5

“fo 10 3|7 lo 0o —01 —08| "o 1 -01 22
o oo 1] [o o o o | o o o 1
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Forward Instantaneous Kinematics

Serial chain
manipulator

Given: The positions of all members of
the chain and the rates of motion about
all the joints.

Required: The total velocity of the end-
effector.

Forward Instantaneous Kinematics
[ dx

dy
dz
0X
oy
0z

End-effector
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Forward Instantaneous Kinematics

+ 3-DOF Plan Robot v, x.%)

Forward Kinematics Solution:
x=1,cos0,+1,cos(6, +6,)+1,cos(b,+ 6, +6,)
y=Isin g +1,sin(6,+6,)+1,sin(E,+ 6, +6,)
a=0,+0,+0,

Differentiating these
equations give:

Vy, ==(1:S; + 1,5, +135,5) @, = (1,5, +1:8,55) @, = 155,50,
Vy = (LC, +1,Cp, +1,C p5) 0 + (1,Cy, +1,C ) @, +1,C 0,

W, =0 + 0, +
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Forward Instantaneous Kinematics

« 3-DOF Plan Robot

In matrix form:

Vy _'(I181+|2812+|38123) -(1; S, +15S155) '|38123— 0,
Vy |= (ILC +1,CL+1,CL) (LCL+I,Chy) 1,C,; | o,
o, | 1 1 1 o]

Jacobian Matrix:
'(I181+|2812+|38123) '(|2812+|38123) '|38123
J= (I1C1+|2C12+|3 C123) (|2C12+|3C123) |3C123

1 1 1




Forward Instantaneous Kinematics

e Calculation of Jacobian

Forward Instantaneous Kinematics

; dx do, .
Serial chain d06 5z End-effector
manipulator - d - _| do - -

P 4 Robot :
dz _ de,
=| Jacobian
ox do
J 4




Forward Instantaneous Kinematics

e Calculation of Jacobian
Assume that the forward kinematics
solution is as follows:

x =f (0,,0,,0,,0,,0,,0,
y f (61192’63’ 412516

4

0,,0.,0
0,,0.,0
o =f (el,e 10,,0,,0,,0,
0,,0.,0
0,,0.,0

7‘~:fy(e;|_1621 31Uy Vg,
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Forward Instantaneous Kinematics

e Calculation of Jacobian

- of, of, of,
00, 00, 00,
- _ of,, of,,
Jii Ji Jie 00, ' T 00,
Jor Ja J 26 of, of,
J = Ja; J36 _ 00, | - 00
Jas Jas o, .
Jsy Js6 99, 9,
of, of,

| Jga : I _ L

00, 00
8fy " " . N 6f7/

00, 004 |




Forward Instantaneous Kinematics

e Calculation of Jacobian

Forward Kinematics Solution:

s &) d a o
(-1 ), () () 90
1-2 0, 0 a0 0
2-3 {4 0 a3 (0 =1
34 {4 () dg —90
4-5 fs (0 (0 90
5-6 s, 0 0 0

“Ty = A1A> 434,454
[ C1(C34Cs5 Cy — S23456)
—51855C%
S1(CaaCsCy — S2345¢)
+C 55 C
8234 C5 Cg + Caas S

0

Ci(—Ca34 CsCp — S334Cy)
+8185556
Si(—=Cr34 G5 Co — S234Cy)
— 15556
— 8234 U5 Cg + T3y
()

Ci(Cr34S5) + S Cs

Si1(C2348s) — C1 Cs

S23485
§]

Ci(Cazaay + Crzas + Caaz) |

S1(Casgay + Cazaz + Caaz)

Sazgay + Sazaz + Saan
1
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Forward Instantaneous Kinematics

e Calculation of Jacobian

Consider last column of the forward kinematic equation of the

I'ObOt 1S. ‘nX OX aX pX‘
RT —|"y % 9y Py
H nZ OZ aZ pZ
‘0 0 0 1
Px| |C1(Crz48,TCo853+C52,)
Py |2[31(Cp3484+C 0383 +C535)
plz 8234a4+8%3a3+82a2

Taking the derivative of p, will yield:
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Forward Instantaneous Kinematics

e Calculation of Jacobian

p,.= Ci (C334-:14 + Corzaz + Caar)

Ip. dp. dp.
dp, = —d0) + —=d6 + - -- + —=4db
P d{?}] ] d{(:}g d{?ﬁ °
dp,= —S1|Coasas + Crzas + Caraz|dby + Ci|—Sr34a4 — Srzas — Srax|db:

+ Ci|—So34as — Sazaz|df; + C1|—Sazsas)db,

From this, we can write the first row of the Jacobian as:
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Forward Instantaneous Kinematics

« Calculation of Jacobian
dp,= —81|Casgas + Crzaz + Caaz|db; + Ci|—Sazsas — Sxzaz — Sraz|dbs
+ Ci[—Sa34as — Sazaz|dbs + Ci[—Sr34a4)|dbs

g;: = J11 = —S51[Cazsas + Cazas + Caas]
g;; = J13 = Ci[—Ss34a3 — Sr3a3]
2;; = J1s = Ci|—Sa34a4]
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Forward Instantaneous Kinematics

e Calculation of Jacobian

For the second row of the Jacobian, we will have to differentiate
the p, expression of the following equation

Px ;31(2234""4 +§23a3 +§2a2)
Py | _ 1(S 234a4g 23a3“SL »25)
plz 234%™ %3""3+ 2%

p, = S (Cxgas + Crzaz + Cran)

dp dp dp
Ip, =—Ldo, +—Ldb, +---+=—Ldb
Py =0, T 90, T T g,
dp, = Ci (Cazgas + Cazas + Caan)db;

—~+ S] [—.S-.g34d,_1_({'f93 —~+ ff{?g —~+ Hl{fj-}q_) — 5-.33{13 (rff:}g —~+ {.!16}3) — Sgﬂg(ﬂl&}g )]
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Forward Instantaneous Kinematics

e Calculation of Jacobian

Rearranging the terms will yield:

—Ld6, = J»1df) = Ci(Crsyas + Crzas + Cras)db;

5;}1,
%0 d6> = Jopdf> = Si(—Sa3sa4 — Sazaz — Saaz)db>

Op

‘ﬁdﬁ};ﬁ = Jo3df3 = Si(—Sa3sas — Sxza3)db;

06,

Op

‘E—fdf:h = Jr4dfy = Si(—Sr34a4)db,

06,

O d0s = Josdfs = 0 1 o, d6¢ = Jo6d6e = 0
96, 905 = »5dfs = anc 96, 6 = J2pdbh =

The same can be done

for the other rows...
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis
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Forward Instantaneous Kinematics

 Calculation of Jacobian: Another Approach

In reality, it is actually a lot simpler to calculate the Jacobian
relative to T, the last frame, than it is to calculate it relative to
the first frame!. Therefore, we will instead use the following
approach.

dx a0,
dy de,
dz | [Robot | de, [D]=[J]D, ]
ox | | Jacobian | dO,
oy ao.
| 0Z | do,

IR. Pual. Robot Manipulator, Mathematics, Programming, and Control. The MIT press, 1981.
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis 43
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Forward Instantaneous Kinematics

e Calculation of Jacobian

[D]=1J][D,]

We can write the velocity equation relative to the last frame as:
T T
[*D]="*J][D,]

This means that for the same joint differential motions, pre-
multiplied with the Jacobian relative to the last frame, we get the
hand differential motions relative to the last frame.




]
Forward Instantaneous Kinematics
e Calculation of Jacobian

How to calculate the Jacobian with respect to the last frame? PGJ ]

o The differential motion relationship of ["°D]=["J][D,] can
be written as:

fod, oy oo T || d6;
I ff}, T"J'g] T"Jrgg . . . '”'.J(Ef] ﬂleg
I"f!‘: - I"Jm . . . . I"Jgﬁ
1§, gy : L P
T Ty T
Tlr 5}1 r Ir J_:J] . a a . r TJ_::E' .

i f'ﬁ; i i Ir'er . . . . Ir.J'ﬁﬁ i _ﬁlgﬁ i

¢ Assuming that any combination of A /A, ... A, can be
expressed with a corresponding n, o, a, p matrix, the
corresponding elements of the matrix will be used to calculate

the Jacobian.
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis g5



Forward Instantaneous Kinematics

« Calculation of Jacobian
¢ If joint i under consideration is a revolute joint, then:

Ty = (—nap, + mp) o = (—oup, +op) sy = (—awp, + ayp,)
")y = n. "oJsi = o. "o J

da

i
A

¢ If joint i under consideration is a prismatic joint, then:
r”'Jh' = Rz r“'jzi = 0z T}'Jai = da
Ty Ty _ Ty
Jr—H =0 J.‘_:i' =0 Jﬁi' =0

¢ For the previous equations, for column i use 'T, , meaning;:
For column 1, use °Ty = A1 A>A3A4A5A¢
For column 2, use '"Te = A>A3A4A5 Aq
For column 3, use > T, = A3A,As A,
For column 4, use ° T, = AyAs A,

For column 5, use *T, = AsAq

.
el

For column 6, use > 1T’y = Ag




Forward Instantaneous Kinematics

e Calculation of Jacobian

Example: Find the '°J,, and '°J, elements of the Jacobian for
the simple revolute robot.

Solution: To calculate two elements of the first column of the
Jacobian, we need to use A A, . . . A, matrix

3 I'y = AjA,A3A4A454;
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Forward Instantaneous Kinematics

e Calculation of Jacobian

Example (cont’d):
-ﬂx 0, a, !”‘4. 7
Iy 0 a 9
R — A A, A A AA, = | 0 7 O By
n- 0z d= p.
0 0 0 1.

.

| ] - = . {.- - - (4113.1 (.:5 {TE', ‘ 1 -
C1(C224CeCo — 522455) T\ -ss 34U Ci(CasSs) ((:234 ay + C :231'13)
—85155C% +5S; S J‘i} +8,Cs 1 N m

S S —C34Cs G ‘
= | §5i(C34Cs5Cs — S2345;) R W YR S1(Ca34S5) S, ((:234”4 + (:13”3)

+ (:1 Sl_:, (:E', _ {':1 SS SE} — (:1 (:5 + (-:E.u 2
1 . 1 . . : So34d. + Soza
45:23_.; (. 5 C. 6 + C 34 E':E-r o Si'.}'l C. 5 C. 6 -+ C. 34 (. f Srz}.l 4_"_?:5 _.14.’3&3{13 2353
() () () 1
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Forward Instantaneous Kinematics

« Calculation of Jacobian
Example (cont’d):
Recall that if joint i under consideration is a revolute joint, then:
Thj]i' — (_”x}'}}a + ﬂ}'px) Thj?i' — (_ﬂ.ﬁ:py + ﬂfpx) Tﬂjﬁi — (_a.ﬁ.‘p}a + ':ijpx)
Thjf-‘]-i' — Nz Thjﬂi' — 0: Irljﬁi' — d-
Then:
HJ]] — (_ﬂ-‘-':u}-' + n}"px)
= —|C1(Ca3s G5 Cp — $234S6) — S185Cs] X [S1(Caz4as + Crzas + Cra))

+ [S1(C234CsCp — S234S6) + C1S5Cs) X [C1(Cazsas + Cazaz + Caran)|
= 85C6(Cassas + Crzaz + Corar)

T . .
041 = nx = 8$233Cs5Cs + CrasSe

4
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Forward Instantaneous Kinematics

 Calculation of Jacobian
Example (cont’d):
Ji =-S5 [C234a4 +C,q8, + Czaz]
T6 —
‘]11 o SSC6 [C234a4 + C:238‘3 T C2a2]
As you can see, J, are different. This is because one is relative to

the reference frame, and the other is relative to the current or T,
frame.
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Inverse Instantaneous Kinematics

Inverse Instantaneous Kinematics

Given: The positions of all members of
the chain and the total velocity of the
end-effector.

Required: The rates of motion of all
do, joints.

Serial chain
manipulator

End-effector
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Inverse Instantaneous Kinematics

In order to calculate the differential motions (or velocities) needed
at the joints of the robot for a desired hand differential motion (or
velocity), we need to calculate the inverse of the Jacobian and
use it in the following equation:

D] = /]| Dy
/D] = [J7][J][De] — [Dg] = [J77][D)]
and similarly:

e ep] = [ Y] [De] = Do =[] [MD)

This means that knowing the inverse of the Jacobian, we can
calculate how fast each joint must move, such that the robot’s
hand will yield a desired differential motion or velocity.
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Inverse Instantaneous Kinematics

 Inverting the Jacobian

Inverting the Jacobian may be done in two ways; both are very
difficult, computationally intensive, and time
consuming.

1. Symbolic technique: is to find the symbolic inverse of the
Jacobian and then substitute the values into it to compute the
velocities.

2. Numerical technique: second technique is to substitute
the numbers in the Jacobian and then invert the numerical
matrix through techniques such as Gaussian elimination or
other similar approaches.

Although these are both possible, they are usually not done.




Inverse Instantaneous Kinematics

» Inverting the Jacobian

Instead, we may use the inverse kinematic equations to
calculate the joint velocities.

)
pS1—p,C1 =0 — £, = tan ](I—F)

P«
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Inverse Instantaneous Kinematics

» Inverting the Jacobian

)
pS1—p,C1 =0 — £, = tan ](I—P)

Py
We can differentiate the relationship to find d0,, which is
the differential value of 6, as:

p.S1 = IUFC]
dp S1 +p, C1d6 = fpr C| — !”PS] dé
dé(p,.C1 + prﬁ']) = —dp,S1 +dp C;

—dp,S1 +dp, C

1."![9] — =
(p_w.;c] —l_ ;U}.-'S] )

Similarly, you can calculate the differential motions of the other
joints...
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Inverse Instantaneous Kinematics

» Inverting the Jacobian

Example: Given the following:

C0.01 ] 5 10 07
D=1[002 J=13 0 0
| 0.03 0o 1 1.

Find the values of joint differential motions for the three joints
(we will call them ds,, dO,, dO,) of the robot that caused the

given frame change.

Solution:
0 0.333 0 [ 0.01 | [ 0.0067
Dy=J"'"D=1| 01 —0.167 0| x [0.02| = | —0.0023
| —0.1 0.167 1 0.03 | | 0.0323




Inverse Instantaneous Kinematics

Example: The revolute robot is in the following configuration.

Calculate t]
such that t

angular vel

ne angular velocity of the first joint for the given values
ne hand frame will have the following linear and

ocities: -,

dx/dt = 1lin/sec dy/dt = —2in/sec 8x/dt = 0.1rad/sec

E}] — U'D._.

a» =15

{{:}3 — QDD, {{:}3 — DD._. {{:}4 — QDD, {{:}5 — U‘D._. Hﬁ — 45D
. a=15, as=5




Inverse Instantaneous Kinematics

Given:

dx/dt = 1in/sec dy/dt = —2in/sec 8x/dt = 0.1rad/sec

9] ZDD._, QEZQDD, 93 ZDD._, 94:9001 95 Zf}u._, 95 =45D
=15, a3=15, a =5

Required: a6,

dt
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Inverse Instantaneous Kinematics

Solution:
dx/dt = 1in/sec dy/dt = —2in/sec 8x/dt = 0.1rad/sec

9] ZDD._, QEZQDD, 93 ZDD._, 94:9001 95 Zf}u._, 9{-_, =45D
=15, a3=15, a =5

From inverse instantaneous kinematics solution:

—dp,S1 +dp, C

{IIQ] —
(E}_YC] _I_ E}F‘q] )

How to calculate dp,, dp,, p,and p, ?
[ 0 A py] [ 0 =8z 8y dx|
ny 0y a p, A — dz 0 —dx dy

RFI‘L{:
n. 0, da. p. —dy  Ox (0 d=




Inverse Instantaneous Kinematics

Solution:

0, () () 90
0, 0 a5 0
_ 0 s 0
94 () dy —9(0)
05 () 0 90
Gy 0 0 0

= [0 VSN RS NG g b
=




Inverse Instantaneous Kinematics

Solution:

BTy = A1 A2 A3 A4 As A

[ Ci(C33CsCs — 523585)  Ci(—C234CsCq — $235Cs)  Ci(Ca34Ss) [~ . . ]
_8,8:C 18,8.5, +5,.C CilCaxsas + Cras + Coay)
S1(Cr34C5Cs — 823485)  S1(—C34C5Cs — $234C5)  S1(Ca3sS5) o /m . .
- +C1 80, — 1858, —C,Cs S1(Cassay + Carzas + Cran)
5234 CsCg + Ca3aSe — 5234 C5Cg 1 U3y Cs $23455 Sa3gas + Sazaz + Saaz
() () () 1

[n, o0, a. P, [ —0.707  0.707 0 =57
ny o0y ay p, 0 0 -1 0
n: 0 a. p. —0.707 —=0.707 0 30

0 0 1 0 0 0 1
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Inverse Instantaneous Kinematics

Solution:

Substituting the desired differential motion values

0 =8z 8y dx| 0 0 0 1
A — 8z 0 —déx dy _(0 0 =01 -2
—dy  Ox 0 dz 0 0.1 0 0
0 0o 0 o] |O 0 0 0]
[ 0 0 0 1]
- - 0.0707 0.0707 0 -5
|0 0 VN
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Solution:

—dp . S1 + d’”f Cy

; 40, = and
Since =G 7,5
"—0.707 0.707 0 —57 C 0 0 0 =
R -Irfj — 0 0 —1 0 [(Ir-)_tr] — 0.07(}? D-D?D? [} | —5
—0.707 —=0.707 0 30 () 0 0.1 0
0 0 0 1 | 0 0 0 0

Substituting the values from the dT and T matrices into the
above equation, we get:
d6, —dp.S1+dp,Ci  —1(0) —5(1)

— — = 1 rad/sec

dt  (p,Ci+p,S1)  —=5(1)+0(0)
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Kinematic Singularity

Singularity is the position or configuration of the manipulator
where the subsequent behavior cannot be predicted, or a joint
velocity become infinite or undeterministic.

3004

240+

180 4+

1200 : g,

60+

Singular _ i
configuration S
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Kinematic Singularity
« Why identifying manipulator singularities is important?
1. Singularities represent configurations from which certain

directions of motion may be unattainable.

2. At singularities, bounded end-effector velocities may
correspond to unbounded joint velocities.

3. At singularities, bounded end-effector forces and torques
may correspond to unbounded joint torques.

4. Singularities usually (but not always) correspond to points
on the boundary of the manipulator workspace, that is, to
points of maximum reach of the manipulator.
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Kinematic Singularity
« Why identifying manipulator singularities is important?

5. Singularities correspond to points in the manipulator
workspace that may be unreachable under small
perturbations of the link parameters, such as length, offset,
etc.

6. Near singularities there will not exist a unique solution to
the inverse kinematics problem. In such cases there may be
no solution or there may be infinitely many solutions.




Kinematic Singularity

At the singular points, the determinant of
the Jacobian matrix is null.

{det [J]=0}

Example: Consider a 2-DOF p
[D]=J[D,] o

that corresponds to the two equations

lanar arm represented by:

dx] [1 17 de,

dy| |0 0]de,
dx=dé, +dé,
dy=0

In this case the det[J]=0, and we see that for any values of the
variables d6, and d0, there is no change in the variable dy. Thus
any vector [D] having a nonzero second component represents

an unattainable direction of instantaneous motion.
L6, Mct/ROB/200 Robotics: 2012-2013 © Dr. Alaa Khamis 3



Kinematic Singularity

« SCARA Robot
-(I3S, +1,S,) -13S;, O
Jd=| 1,c,+,Cc, 1,C, O
I 0 0 -1

The Jacobian is:
M :_[' |, Cpo(l; Sy, +1, S, ) +15,S,(1, Cp +1, Cl)]

At the singular points
{det [J]=0}
|3 C12(|3 S12 + |2 S1 )= |3 S12('3 C12 + Iz Cl)




Kinematic Singularity
« SCARA Robot (cont’d)

|3 C12(|3 S12 + |2 S1 ) — |3 S12('3 C12 + Iz Cl)

These can be achieved when q,=0

orrw %,

¢ q,=0: Outer limit of the work 240

space 150

120

¢ g,=m: Inner limit of the work

60T

\

space r

Abrupt change in the velocity < |
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Summary

Forward instantaneous kinematics calculates how fast a robot’s
hand moves in space if the joint velocities are known.

Inverse differential motion determines how fast each joint of a
robot must move in order to generate a desired hand velocity.

Together with the inverse kinematic equations of motion, we
can control both the motions and the velocity of a multi-DOF
robot in space. We can also follow the location of the hand
frame as it moves in space.

Kinematic singularity is the position or configuration of the
manipulator where the subsequent behavior cannot be
predicted, or a joint velocity become infinite or undeterministic.

At a singular configuration it is impossible to generate end-
effector task velocities or accelerations in certain directions.
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Summary

« Given that any point of the workspace boundary represents a
positioning singularity — different from an orientation
singularity — manipulators with workspace boundaries that are
not manifolds exhibit double singularities at the edges of their
workspace boundary, which means that at edge points the rank
of the robot Jacobian becomes deficient by two. At any other
point of the workspace boundary the rank deficiency is by one.




