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Lecture 6 – Friday March 22, 2013

Mct/ROB/200 Robotics, Spring Term 12-13

Differential Motions and Velocities
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Objectives

When you have finished this lecture you should be able to:

• Understand the differential kinematics problem of the robot.

• Learn how to derive forward and inverse instantaneous 

kinematic equations of the robot.

• Understand kinematic singularity.
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Differential Kinematics

Forward Instantaneous Kinematics

Inverse Instantaneous Kinematics

Given: The positions of all members of 

the chain and the rates of motion about 

all the joints.

Required: The total velocity of the end-

effector.

Given: The positions of all members of the 

chain and the total velocity of the end-

effector.

Required: The rates of motion of all joints.

End-effector
Serial chain 

manipulator

• Forward Instantaneous Kinematics=Forward Jacobian=Forward Differential Kinematics
• Inverse Instantaneous Kinematics=Inverse Jacobian=Inverse Differential Kinematics





















z

y
x

dz

dy
dx



























6

5

4

3

2

1








d

d

d

d

d

d



MUSES_SECRET: ORF-RE Project   - © PAMI Research Group – University of Waterloo 6/226L6, Mct/ROB/200 Robotics: 2012-2013  ©  Dr. Alaa Khamis

Differential Kinematics

• The rate of motion about the joint is the angular velocity of 
rotation about a revolute joint or the translational velocity of 
sliding along a prismatic joint. 

• The total velocity of a member is the velocity of the origin of 
the reference frame fixed to it combined with its angular 
velocity. That is, the total velocity has six independent 
components and therefore, completely represents the velocity 
field of the member. 

• It is important to note that this definition includes an 
assumption that the pose of the mechanism is completely 
known. In most situations, this means that either the forward 
or inverse position kinematics problem must be solved before 
the differential kinematics problem can be addressed. The same 
is true of the inverse instantaneous kinematics problem.
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Differential Motions

Differential motions are small movements of mechanisms (e.g., 

robots) that can be used to derive velocity relationships between 

different parts of the mechanism.

2-DOF planar mechanism
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The equations that describe the 

position of point B are as follows:

• 2-DOF planar mechanism

Differentiating these equations 

gives:
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Differential Motions

and in matrix form:

• 2-DOF planar mechanism (cont’d)
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Differential Motions

• 2-DOF planar mechanism (cont’d)
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This is the differential motion relationship. A differential 

motion is, by definition, a small movement. 

Therefore, if it is measured in—or calculated for—a small 

period of time (a differential or small time), a velocity 

relationship can be found.
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◊ The Jacobian is a representation of the geometry of the 
elements of a mechanism in time.

◊ Jacobian is time-related; since the values of joint angles vary 
in time, the magnitude of the elements of the Jacobian vary in 
time as well.

Differential Motions

• 2-DOF planar mechanism (cont’d)
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◊ Jacobian defines how the end effector changes relative to 
instantaneous changes in the system.

◊ It allows the conversion of differential motions or velocities of 
individual joints to differential motions or velocities of points of 
interest (e.g., the end effector). It also relates the individual joint 
motions to overall mechanism motions.
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Differential Motions

• 2-DOF planar mechanism (cont’d)
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Differential Motions of a Frame

(a) Differential 

motions of a frame
(b) differential motions of the 

robot joints and the endplate

(c) differential motions of a frame caused by the differential motions of a robot
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Differential Motions of a Frame

• Differential translations;

• Differential rotations;

• Differential transformations (combinations of translations and 

rotations).

Differential motions of a frame can be divided into the following:
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Differential Motions of a Frame

• Differential Translations

A differential translation is the translation of a frame at 

differential values. 

Therefore, it can be represented by Trans(dx, dy, dz). 

This means the frame has moved a differential amount along the 

x-, y-, and z-axes.
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Differential Motions of a Frame

• Differential Translations

Example: A frame B has translated a differential amount of 

Trans(0.01, 0.05, 0.03) units. Find its new location and 

orientation.
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Solution: Since the differential motion is only a translation, 

the orientation of the frame should not be affected. The new 

location of the frame is:
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Differential Motions of a Frame

• Differential Rotations about the Reference Axes

A differential rotation is a small rotation of the frame. It is 

generally represented by Rot(q,d), which means that the 

frame has rotated an angle of d about an axis q.

Specifically, differential rotations about the x-, y-, and z-axes are 

defined by x, y, and z. 

Since the rotations are small amounts, we can use the 

following approximations:

1cos
radians)(in  sin
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Differential Motions of a Frame

• Differential Rotations about the Reference Axes

Then, the rotation matrices representing differential rotations 

about the x-, y-, and z-axes will be:
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Differential Motions of a Frame

• Differential Rotations about the Reference Axes

Similarly, we can also define differential rotations about the 

current axes as:
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Differential Motions of a Frame

• Differential Rotations about the Reference Axes

Order of multiplication in Successive Rotations:

If we set higher-order differentials such as x y to zero, 

the results are exactly the same. Consequently, for differential 

motions, the order of multiplication is no longer important 

and Rot(x, x)Rot(y, y)= Rot(y, y)Rot(x, x).
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Differential Motions of a Frame

• Differential Rotation about a General Axis q

We can assume that a differential 

rotation about a general axis q is 

composed of three differential 

rotations about the three axes, in any 

order, or

kzjyixqd )()()()(  
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Differential Motions of a Frame

• Differential Rotation about a General Axis q

If we neglect all higher-order differentials, we get:
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Differential Motions of a Frame

• Differential Rotation about a General Axis q

Example: Find the total differential transformation caused by 

small rotations about the three axes of x=0.1, y= 0.05, z=0.02 

radians.

Solution:
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Differential Motions of a Frame

• Differential Transformations of a Frame

The differential transformation of a frame is a combination of 

differential translations and rotations in any order. 

If we denote:

T: the original frame

dT:  the change in the frame T as a result of a differential 

transformation, then:

where I is a unit matrix. 

θ)][T]dz)Rot(q,dy,[Trans(dx,dT][T    

I][T]dθdz)Rot(q,dy,[Trans(dx,[dT]  )

or
d
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Differential Motions of a Frame

• Differential Transformations of a Frame

The above equation can be written as:

[] (or simply ) is called differential operator.

I][T]dθdz)Rot(q,dy,[Trans(dx,[dT]  )

I]dθdz)Rot(q,dy,[Trans(dx,Δ  )

where

[T][Δ[dT] ]
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Differential Motions of a Frame

• Differential Transformations of a Frame

As you can see, the differential operator is not a transformation 

matrix, or a frame. It does not follow the required format either; 

it is only an operator, and it yields the changes in a frame.
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Differential Motions of a Frame

• Differential Transformations of a Frame

Example: Find the effect of a differential rotation of 0.1 rad 

about the y-axis followed by a differential translation of [0.1, 0, 

0.2] on the given frame B.

Solution:
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Differential Motions of a Frame

• Differential Transformations of a Frame

Example: Find the location and the orientation of frame B 

after the move.

Solution: The new location and orientation of the frame can 

be found by adding the changes to the original values. The 

result is:
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Forward Instantaneous Kinematics

Forward Instantaneous Kinematics

Given: The positions of all members of 

the chain and the rates of motion about 

all the joints.

Required: The total velocity of the end-

effector.

End-effector
Serial chain 

manipulator
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Forward Instantaneous Kinematics

• 3-DOF Plan Robot
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Forward Instantaneous Kinematics

• 3-DOF Plan Robot

In matrix form:
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Forward Instantaneous Kinematics

• Calculation of Jacobian

Forward Instantaneous Kinematics

End-effectorSerial chain 

manipulator
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Forward Instantaneous Kinematics

• Calculation of Jacobian
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Assume that the forward kinematics 

solution is as follows:
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Forward Instantaneous Kinematics

• Calculation of Jacobian
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Forward Instantaneous Kinematics

• Calculation of Jacobian

Forward Kinematics Solution:
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Forward Instantaneous Kinematics

Consider last column of the forward kinematic equation of the 

robot is:
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Taking the derivative of px will yield:

• Calculation of Jacobian
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Forward Instantaneous Kinematics

From this, we can write the first row of the Jacobian as:

• Calculation of Jacobian
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Forward Instantaneous Kinematics

• Calculation of Jacobian
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Forward Instantaneous Kinematics

For the second row of the Jacobian, we will have to differentiate 

the py expression of the following equation

• Calculation of Jacobian
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Forward Instantaneous Kinematics

The same can be done 

for the other rows…

Rearranging the terms will yield:

• Calculation of Jacobian
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Forward Instantaneous Kinematics

In reality, it is actually a lot simpler to calculate the Jacobian 

relative to T6, the last frame, than it is to calculate it relative to 

the first frame1. Therefore, we will instead use the following 

approach. 
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• Calculation of Jacobian: Another Approach

1R. Pual. Robot Manipulator, Mathematics, Programming, and Control. The MIT press, 1981.
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Forward Instantaneous Kinematics

][J][D[D] θ

We can write the velocity equation relative to the last frame as:

This means that for the same joint differential motions, pre-

multiplied with the Jacobian relative to the last frame, we get the 

hand differential motions relative to the last frame.

]J][D[D][ θ

TT 66 

• Calculation of Jacobian
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Forward Instantaneous Kinematics

How to calculate the Jacobian with respect to the last frame?  J
T6

◊ The differential motion relationship of                                 can 

be written as:

◊ Assuming that any combination of A1A2 . . . An can be 

expressed with a corresponding n, o, a, p matrix, the 

corresponding elements of the matrix will be used to calculate 

the Jacobian.

• Calculation of Jacobian

]J][D[D][ θ

TT 66 
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Forward Instantaneous Kinematics

◊ If joint i under consideration is a revolute joint, then:

◊ If joint i under consideration is a prismatic joint, then:

◊ For the previous equations, for column i use i-1T6 , meaning:

• Calculation of Jacobian
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Forward Instantaneous Kinematics

Example: Find the T6J11 and T6J41 elements of the Jacobian for 

the simple revolute robot.

Solution: To calculate two elements of the first column of the 

Jacobian, we need to use A1A2 . . . A6 matrix

• Calculation of Jacobian
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Forward Instantaneous Kinematics

Example (cont’d):

• Calculation of Jacobian
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Forward Instantaneous Kinematics

Example (cont’d):

Recall that if joint i under consideration is a revolute joint, then:

Then:

• Calculation of Jacobian
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Forward Instantaneous Kinematics

Example (cont’d):

As you can see, J11 are different. This is because one is relative to 

the reference frame, and the other is relative to the current or T6

frame.

 223234234111 aCaCaCSJ 

 2232342346511
6 aCaCaCCSJ

T


• Calculation of Jacobian
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Outline

• Differential Kinematics

• Differential Motions

• Differential Motions of a Frame

• Forward Instantaneous Kinematics 

• Inverse Instantaneous Kinematics

• Kinematic Singularity

• Summary
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Inverse Instantaneous Kinematics

Inverse Instantaneous Kinematics

Given: The positions of all members of 

the chain and the total velocity of the 

end-effector.

Required: The rates of motion of all 

joints.
End-effector

Serial chain 

manipulator
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Inverse Instantaneous Kinematics

In order to calculate the differential motions (or velocities) needed 

at the joints of the robot for a desired hand differential motion (or 

velocity), we need to calculate the inverse of the Jacobian and 

use it in the following equation:

This means that knowing the inverse of the Jacobian, we can 

calculate how fast each joint must move, such that the robot’s 

hand will yield a desired differential motion or velocity.
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Inverse Instantaneous Kinematics

• Inverting the Jacobian

Inverting the Jacobian may be done in two ways; both are very 

difficult, computationally intensive, and time 

consuming. 

1. Symbolic technique: is to find the symbolic inverse of the 

Jacobian and then substitute the values into it to compute the 

velocities. 

2. Numerical technique: second technique is to substitute 

the numbers in the Jacobian and then invert the numerical 

matrix through techniques such as Gaussian elimination or 

other similar approaches.

Although these are both possible, they are usually not done.
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Inverse Instantaneous Kinematics

• Inverting the Jacobian

Instead, we may use the inverse kinematic equations to 

calculate the joint velocities.
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Inverse Instantaneous Kinematics

• Inverting the Jacobian

We can differentiate the relationship to find d1, which is 

the differential value of 1, as:

Similarly, you can calculate the differential motions of the other 

joints…
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Inverse Instantaneous Kinematics

• Inverting the Jacobian

Example: Given the following:

Find the values of joint differential motions for the three joints 

(we will call them ds1, d2, d3) of the robot that caused the 

given frame change.

Solution:
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Inverse Instantaneous Kinematics

Example: The revolute robot is in the following configuration. 

Calculate the angular velocity of the first joint for the given values 

such that the hand frame will have the following linear and 

angular velocities:
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Inverse Instantaneous Kinematics

Given:

Required:
dt

d 1
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Inverse Instantaneous Kinematics

Solution:

From inverse instantaneous kinematics solution:

How to calculate dpx, dpy, px and py ?
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Inverse Instantaneous Kinematics

Solution:
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Inverse Instantaneous Kinematics

Solution:
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Inverse Instantaneous Kinematics

Solution:

Substituting the desired differential motion values



MUSES_SECRET: ORF-RE Project   - © PAMI Research Group – University of Waterloo 68/2268L6, Mct/ROB/200 Robotics: 2012-2013  ©  Dr. Alaa Khamis

Inverse Instantaneous Kinematics

Solution:

Since

Substituting the values from the dT and T matrices into the 

above equation, we get:

and
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Outline

• Differential Kinematics

• Differential Motions

• Differential Motions of a Frame

• Forward Instantaneous Kinematics 

• Inverse Instantaneous Kinematics

• Kinematic Singularity

• Summary
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Singularity is the position or configuration of the manipulator 

where the subsequent behavior cannot be predicted, or a joint 

velocity become infinite or undeterministic.

Singular 
configuration

Kinematic Singularity
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Kinematic Singularity

• Why identifying manipulator singularities is important?

1. Singularities represent configurations from which certain 

directions of motion may be unattainable.

2. At singularities, bounded end-effector velocities may 

correspond to unbounded joint velocities.

3. At singularities, bounded end-effector forces and torques 

may correspond to unbounded joint torques. 

4. Singularities usually (but not always) correspond to points 

on the boundary of the manipulator workspace, that is, to 

points of maximum reach of the manipulator.
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Kinematic Singularity

• Why identifying manipulator singularities is important?

5. Singularities correspond to points in the manipulator 

workspace that may be unreachable under small 

perturbations of the link parameters, such as length, offset, 

etc.

6. Near singularities there will not exist a unique solution to 

the inverse kinematics problem. In such cases there may be 

no solution or there may be infinitely many solutions.
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At the singular points, the determinant of 
the Jacobian matrix is null.      

{det [J]=0}

Example: Consider a 2-DOF planar arm represented by:

Kinematic Singularity

that corresponds to the two equations

In this case the det[J]=0, and we see that for any values of the 

variables d1 and d2 there is no change in the variable dy. Thus 

any vector [D] having a nonzero second component represents 

an unattainable direction of instantaneous motion.
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The Jacobian is:

Kinematic Singularity

• SCARA Robot 
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{det [J]=0}

At the singular points
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• SCARA Robot (cont’d)

)C lC l(S l) S l + S (lC l 1212312312123123 

These can be achieved when q2=0 

or 

Abrupt change in the velocity

• q2=0: Outer limit of the work 

space

• q2=: Inner limit of the work 

space

Kinematic Singularity
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Summary

• Forward instantaneous kinematics calculates how fast a robot’s 

hand moves in space if the joint velocities are known.

• Inverse differential motion determines how fast each joint of a 

robot must move in order to generate a desired hand velocity.

• Together with the inverse kinematic equations of motion, we 

can control both the motions and the velocity of a multi-DOF 

robot in space. We can also follow the location of the hand 

frame as it moves in space.

• Kinematic singularity is the position or configuration of the 

manipulator where the subsequent behavior cannot be 

predicted, or a joint velocity become infinite or undeterministic.

• At a singular configuration it is impossible to generate end-

effector task velocities or accelerations in certain directions.
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Summary

• Given that any point of the workspace boundary represents a 

positioning singularity – different from an orientation 

singularity – manipulators with workspace boundaries that are 

not manifolds exhibit double singularities at the edges of their 

workspace boundary, which means that at edge points the rank 

of the robot Jacobian becomes deficient by two. At any other 

point of the workspace boundary the rank deficiency is by one.


