

Suez University Faculty of Petroleum and Mining Engineering BSE225, Spring Term 16-17

Algorithms

Lecture 5 – Monday March 20, 2017

Outline

- What is an Algorithm?
- Representing Algorithms
- Pseudo-code
- Algorithm Implementation
- Types of Algorithms
- Summary

Outline

• What is an Algorithm?

- Representing Algorithms
- Pseudo-code
- Algorithm Implementation
- Types of Algorithms
- Summary

Computer science, or computing science, is the study of the theoretical foundations of information and computation and their implementation and application in computer systems.

Source: Wikipedia.org - the free encyclopedia

Computer Science is the study of **algorithms**, including:

- Their formal and mathematical properties
- Their hardware realizations
- Their linguistic realizations
- Their applications

• An algorithm is a step-by-step specification of a method to solve a problem within a finite amount of time.

Muhammad ibn Musa al-Khwarizmi (780-850) Mathematician, astronomer, astrologer and geographer

• An algorithm is a set of ordered steps for solving a problem, such as a mathematical formula or the instructions in a program. Source: Computer Desktop Encyclopedia.

• An algorithm is a procedure (a finite set of well-defined instructions) for accomplishing some task which, given an initial state, will terminate in a defined end-state.

Source: Wikipedia

Data + Algorithms = Program

Problem: Going from Suez University to Faculty of Petroleum

Problem: Decide whether a number is positive or negative. Solution:

Outline

- What is an Algorithm?
- <u>Representing Algorithms</u>
- Pseudo-code
- Algorithm Implementation
- Types of Algorithms
- Summary

Representing Algorithms

- Flow charts
- Natural Languages
- Formal Programming Language
- Pseudo-code

A flowchart is a graphical representation of an algorithm.

Example-2: Given a list of corporate income taxes paid by some Canadian industries in 2005. Calculate the average tax paid.

ID	Industry	M\$
1	finance and insurance industries	11,028
2	Agriculture, fishing, hunting, trapping and support activities	495
3	Oil and gas extraction and support activities	3,749
4	Food and soft drink manufacturing	912
5	Clothing, textile and leather manufacturing	160

Source: Statistics Canada, <u>http://www.statcan.ca/</u>

Solution:

- Inputs: 5 paid taxes \Rightarrow T₁, T₂, T₃, T₄, T₅
- Outputs: Average tax

```
Expression: Average=(T_1+T_2+T_3+T_4+T_5)/5
```

Example-2:

ID	Industry	M\$
1	finance and insurance industries	11,028
2	Agriculture, fishing, hunting, trapping and support activities	495
3	Oil and gas extraction and support activities	3,749
4	Food and soft drink manufacturing	912
5	Clothing, textile and leather manufacturing	160

Inputs: 5 taxes \Rightarrow T₁, T₂, T₃, T₄, T₅ Outputs: Average paid tax **Expression:** Average= $(T_1+T_2+T_3+T_4+T_5)/5$

11028,495,3749,912,160

Av=(11028+495+3749+912+160)/5

Example-2:

Inputs: 5 taxes \Rightarrow T₁, T₂, T₃, T₄, T₅ Expression: Sum=T₁+T₂+T₃+T₄+T₅, Average=Sum/5

Computer is just a **fast stupid machine** so to calculate the average, this machine must be provided by both data and algorithm. A computer with a single processor can perform one operation at a certain time. To calculate the sum of 5 taxes, computer will carry out five additions:

Example-2:

Iterations	Old Sum	New Sum
1 st Addition	0	0+T ₁
i=1 2 nd Addition	0+T ₁	$\rightarrow 0+T_1+T_2$
i=2 3 rd Addition	$0+T_1+T_2$	$0+T_1+T_2+T_3$
i=3 4 th Addition	$0+T_1+T_2+T_3$	
i=4 5 th Addition	$0+T_1+T_2+T_3+T_4$	$\rightarrow 0+T_1+T_2+T_3+T_4+T_5$
i=5		

Representing Algorithms: Natural Languages

Get the 5 paid taxes. Initially, set the value of the sum to 0 and the value of the counter i to 1. When these initializations have been completed, begin looping until the value of the variable i becomes greater than 5. First, add T_i to sum. Then add 1 to i and begin the loop all over again. Divide the sum by 5 to compute the average price.

Disadvantages

- too verbose
- unstructured
- too rich in interpretation and meaning (ambiguous)
- imprecise.

Representing Algorithms: Programming Language

```
import java.text.DecimalFormat;
import java.util.Scanner;
```

```
public class Average
{
  public static void main (String[] args)
      int sum = 0, Tax, count = 0;
      double average;
      Scanner scan = new Scanner (System.in);
      System.out.print ("Enter paid tax (0 to quit): ");
      Tax = scan.nextInt();
      while (Tax != 0) // 0 to terminate loop
         count++;
         sum += Tax;
         System.out.print ("Enter paid tax (0 to quit): ");
         Tax = scan.nextInt();
      3
      System.out.println ();
      if (count == 0)
         System.out.println ("No values were entered.");
      else
      {
         average = (double)sum / count;
         DecimalFormat fmt = new DecimalFormat ("0.###");
         System.out.println ("The average paid tax is " + fmt.format(average) + "$");
      }
   3
```

Disadvantages

- Too many implementation details to worry about such as language syntax, grammar, punctuation, etc.
- Too rigid syntax.

Representing Algorithms: Pseudo-code

- Pseudo is a prefix of Greek origin. It means "false" or fake code.
- Not actually executed on computers.
- Allows us to think out a program before writing the code for it.

```
BEGIN
```

```
get values for paid taxes, T_1, T_2, T_3, T_4, T_5
      set Sum to 0
      set i to 1
         while (i \le 5)
            set Sum to Sum+T<sub>i</sub>
            set i to i+1
         }
      set Average to Sum/5
      print Average
END
```

Representing Algorithms: Pseudo-code

- English like constructs (or other natural language) but
- Modeled to look like statements in typical programming languages.

```
BEGIN
```

```
get values for paid taxes, T_1, T_2, T_3, T_4, T_5
      set Sum to 0
      set i to 1
        while (i \le 5)
            set Sum to Sum+T<sub>i</sub>
            set i to i+1
      set Average to Sum/5
      print Average
END
```

Outline

- What is an Algorithm?
- Representing Algorithms

• <u>Pseudo-code</u>

- Algorithm Implementation
- Types of Algorithms
- Summary

- **Pseudo-code** (pseudo is a prefix of Greek origin means **"false"** or fake) is a description of a computer programming algorithm that uses the structural conventions of programming languages, but omits language-specific syntax.
- It can also refer to a **high level "language"** whose aim is to generalize the logic and program flow of a computer program.

• Input

get values for paid taxes, T_1, T_2, T_3, T_4, T_5

<u>or</u>

get T₁,T₂,T₃,T₄,T₅

• Output

print Average

Variables

A variable is a named storage that holds the data assigned to it until a new value is assigned or the program is finished

Examples:

set the value of Tax to 3.5 or set Tax to 3.5 The variable Tax holds the value 3.5 after its execution. set the value of Tax to Tax+1 Same as: add 1 to the value of Tax or increment Tax (Tax is now 4.5)

Conditional Statements if statement:

if <condition> then</condition>	if (my_income>=10,000) then
operations for the then-part	set Tax to 0.10
else	مادم
operations for the else-part	
endif	set Tax to 0.05
	endif

Conditional operation is a control operation that allow us to alter the normal sequential flow of control in an algorithm. Conditional statements are the "question-asking" operations of an algorithm.

• Conditional Statements Nested if statement:

if <first condition> then // do first thing else if < second condition > then // do second thing else // do something else endif endif

if (my_income > 100,000) then set Tax to 0.17 else if (my_income =100,000) then set Tax to 0.12 else set Tax to 0.08 endif endif

• Looping (Iterations) while statement:

```
while <condition>
{
    // do some operations
} // end while
```

while (years <= 5)
{
 set balance to initial_balance(1+0.05*)^{years}
 set years to years+1
}

This means repeat the operations as long as the condition is true

• Examples

Exmple-1: Write an algorithm in pseudo-code to determine the flying time between two cities given the distance between them and the average speed of the airplane.

Time=Distance/Speed

Exmple-2: Write an algorithm in pseudo-code to convert the temperature from Celsius to Fahrenheit.

$T_f = (9/5) T_c + 32$

• Examples

Exmple-3: Write an algorithm in pseudo-code that gets the radius of a circle as input and calculates the area and circumference.

Area=3.14*r²

Circumference=2*3.14*r

Exmple-4: If you invested 10000 pounds with 5% compounded annually. Write an algorithm in pseudo-code that prints out your balance after one year.

Exmple-5: Write an algorithm in pseudo-code that calculates the net salary of an employee after deducting the 8% of taxes from a gross salary of 2000 L.E.

Outline

- What is an Algorithm?
- Representing Algorithms
- Pseudo-code

<u>Algorithm Implementation</u>

- Types of Algorithms
- Summary

Algorithm Implementation

Problem: Given a list of medical drugs and their prices. Calculate the average price.

Microsoft Excel - Book1				
:2)	Eile	<u>E</u> dit <u>V</u> iew Insert F <u>o</u>	rmat <u>T</u> ools <u>D</u> ata <u>W</u> indow	Help
: 🗅	<u> </u>	🖪 🗐 🖏 4	🖹 🔁 • 🟈 🄊 • (° • 🖗	Σ
1] 🛛 🔁 🏹 🖉 🏷	💆 🔩 😥 💖 Reply with G	hanges
C7 ▼ fx =AVERAGE(C2:C6)				
	Α	В	С	D
1	ID	Drug Name	Price per unit	
2	1	Sprycel	\$1.40	
3	2	Prezista	\$3.50	
4	3	Azilect	\$13.90	
5	4	Azactam	\$10.00	
6	5	Tygacil	\$7.50	
7		Average	\$7.26	
8				

MS Excel has a builtin function called **AVERAGE**, which can be used to calculate the average price in very abstracted way.

Algorithm Implementation

Problem: Sometimes we need to implement an algorithm with mathematical and/or logical operations not supported by Excel or other software packages.

In	sert Function		? 🗙
<u>5</u> e	earch for a function:		
	Type a brief descripti click Go	<u>G</u> o	
	Or select a <u>c</u> ategory:	All	
Se	elect a functio <u>n</u> :	Most Recently Used	
	ASINH ATAN ATAN2 ATANH AVEDEV	Financial Date & Time Math & Trig Statistical Lookup & Reference	
	AVERAGE AVERAGEA	Database Text	~
	AVERAGE(number1 Returns the average (numbers or names, ar	Logical Information (arithmetic mean) of its arguments, wh rays, or references that contain numb	ich can be ers.
H	alp on this function	ОК	Cancel

Solution: start to create your own program using a high-level programming language.

Outline

- What is an Algorithm?
- Representing Algorithms
- Pseudo-code
- Algorithm Implementation
- <u>Types of Algorithms</u>
- Summary

Example: Convert temperature from Celsius to Fahrenheit using the following formula in the following cases:

 $T_{f}=9/5^{*}T_{c}+32$

- a. Convert only one value from Celsius to Fahrenheit,
- b. Convert the Celsius degree to Fahrenheit <u>if and only if</u> the Celsius degree is less than certain value, let's say (90°C)
- c. Convert range of Celsius degrees from (1°C) to (100°C)

Example: Convert temperature from Celsius to Fahrenheit using the following formula in the following cases:

 $T_{f}=9/5^{*}T_{c}+32$

a. Convert only one value from Celsius to Fahrenheit.

Input: T_c

Output: T_f

Expression: $T_f = 9/5^*T_c + 32$

Sequential Algorithms

Sequential algorithm is formed by a list of operations (or steps) arranged in a "linear" fashion, such that the order of these steps is well defined and significant.

Sequential Algorithms

Sequential Algorithms

```
>>
>> temp c=50
temp c =
    50
>> temp_f=(9/5)*(temp_c)+32
temp f =
   122
```

Example: Convert temperature from Celsius to Fahrenheit using the following formula in the following cases:

 $T_{f} = 9/5^{*}T_{c} + 32$

b. Convert the Celsius degree to
 Fahrenheit <u>if and only if</u> the Celsius
 degree is less than certain value, let's
 say (90°C)

Example: Convert temperature from Celsius to Fahrenheit using the following formula in the following cases:

Outline

- What is an Algorithm?
- Representing Algorithms
- Pseudo-code
- Algorithm Implementation
- Types of Algorithms
- Sequential Algorithms

• <u>Summary</u>

Summary

- An algorithm is a step-by-step specification of a method to solve a problem within a finite amount of time.
- Usually we use "pseudo-code" to describe algorithms.
- Pseudo-code is a notation resembling a programming language but not intended for actual compilation.
- Flowcharts can be thought of as a graphical form of pseudocode.
- Algorithms can be implemented in any programming language.

Summary

- Sequential algorithm is formed by a list of operations (or steps) arranged in a "linear" fashion, such that the order of these steps is well defined and significant.
- Conditional operation is a control operation that allow us to alter the normal sequential flow of control in an algorithm.
 Conditional statements are the "question-asking" operations of an algorithm.
- An Iterative operation allows the repetition of a block of statements according to a condition. Iteration is sometimes called looping.